Nous montrons comment on peut associer à chaque forme binaire irréductible un élément du groupe de classes de l'anneau associé. Cette classe ne dépend pas du choix du représentant de la forme modulo l'action de SL2. Il s'agit d'une généralisation de la théorie classique pour les formes quadratiques.
We explain how to associate to any irreducible binary form an element of the class group in the corresponding ring. This class does not depend on the choice of the form modulo the action of SL2. The question is to generalize the classical theory of quadratic forms.
Accepté le :
Publié le :
@article{CRMATH_2003__336_1_7_0, author = {Simon, Denis}, title = {La classe invariante d'une forme binaire}, journal = {Comptes Rendus. Math\'ematique}, pages = {7--10}, publisher = {Elsevier}, volume = {336}, number = {1}, year = {2003}, doi = {10.1016/S1631-073X(02)00021-3}, language = {fr}, url = {http://archive.numdam.org/articles/10.1016/S1631-073X(02)00021-3/} }
TY - JOUR AU - Simon, Denis TI - La classe invariante d'une forme binaire JO - Comptes Rendus. Mathématique PY - 2003 SP - 7 EP - 10 VL - 336 IS - 1 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/S1631-073X(02)00021-3/ DO - 10.1016/S1631-073X(02)00021-3 LA - fr ID - CRMATH_2003__336_1_7_0 ER -
Simon, Denis. La classe invariante d'une forme binaire. Comptes Rendus. Mathématique, Tome 336 (2003) no. 1, pp. 7-10. doi : 10.1016/S1631-073X(02)00021-3. http://archive.numdam.org/articles/10.1016/S1631-073X(02)00021-3/
[1] A Course in Computational Algebraic Number Theory, Graduate Texts in Math., 138, Springer-Verlag, 1996 (Third corrected printing)
[2] Primes of the Form x2+ny2, Wiley, New York, 1989
[3] J.E. Cremona, Classical invariants and 2-descent on elliptic curves, J. Symbolic Comput. 31 (1–2) 71–87
[4] Theory of irrationalities of third degree, Trudy Mat. Inst. Steklov, Volume 11 (1940)
[5] ftp://megrez.math.u-bordeaux.fr/pub/numberfields/
[6] The index of nonmonic polynomials, Indag. Math. (N.S), Volume 12 (2001) no. 4, pp. 505-517
Cité par Sources :