Ordinary Differential Equations
On the normal form of a system of differential equations with nilpotent linear part
[Forme normale d'un système d'équations différentielles à partie linéaire nilpotente]
Comptes Rendus. Mathématique, Tome 336 (2003) no. 2, pp. 129-134.

On considère des formes prénormales associées à des perturbations génériques du système x ˙=2y,y ˙=3x 2 . Il est connu qu'elles admettent une forme normale formelle x ˙=2y+2xΔ * ,y ˙=3x 2 +3yΔ * , où Δ * =x+A 0 (y 2 -x 3 ) [Differential Equations 158 (1) (1999) 152–173]. Nous démontrons que A0 et les transformations normalisantes sont divergentes, mais 1-sommable.

We consider prenormal forms associated to generic perturbations of the system x ˙=2y,y ˙=3x 2 . It is known that they have a formal normal form x ˙=2y+2xΔ * ,y ˙=3x 2 +3yΔ * , where Δ * =x+A 0 (y 2 -x 3 ) [Differential Equations 158 (1) (1999) 152–173]. We show that the series A0 and the normalizing transformations are divergent, but 1-summable.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)00022-5
Canalis-Durand, Mireille 1 ; Schäfke, Reinhard 2

1 GREQAM, Université d'Aix-Marseille III, 13002 Marseille, France
2 IRMA, Université Louis Pasteur, 67084 Strasbourg cedex, France
@article{CRMATH_2003__336_2_129_0,
     author = {Canalis-Durand, Mireille and Sch\"afke, Reinhard},
     title = {On the normal form of a system of differential equations with nilpotent linear part},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {129--134},
     publisher = {Elsevier},
     volume = {336},
     number = {2},
     year = {2003},
     doi = {10.1016/S1631-073X(02)00022-5},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/S1631-073X(02)00022-5/}
}
TY  - JOUR
AU  - Canalis-Durand, Mireille
AU  - Schäfke, Reinhard
TI  - On the normal form of a system of differential equations with nilpotent linear part
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 129
EP  - 134
VL  - 336
IS  - 2
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/S1631-073X(02)00022-5/
DO  - 10.1016/S1631-073X(02)00022-5
LA  - en
ID  - CRMATH_2003__336_2_129_0
ER  - 
%0 Journal Article
%A Canalis-Durand, Mireille
%A Schäfke, Reinhard
%T On the normal form of a system of differential equations with nilpotent linear part
%J Comptes Rendus. Mathématique
%D 2003
%P 129-134
%V 336
%N 2
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/S1631-073X(02)00022-5/
%R 10.1016/S1631-073X(02)00022-5
%G en
%F CRMATH_2003__336_2_129_0
Canalis-Durand, Mireille; Schäfke, Reinhard. On the normal form of a system of differential equations with nilpotent linear part. Comptes Rendus. Mathématique, Tome 336 (2003) no. 2, pp. 129-134. doi : 10.1016/S1631-073X(02)00022-5. http://archive.numdam.org/articles/10.1016/S1631-073X(02)00022-5/

[1] Handbook of Mathematical Functions (Abramowitz, M.; Stegun, I.A., eds.), Dover, New York, 1964

[2] Canalis-Durand, M.; Michel, F.; Teisseyre, M. Algorithms for formal reduction of vector fields singularities, J. Dynamical Control Systems, Volume 7 (2001) no. 1, pp. 101-125

[3] Cerveau, D.; Moussu, R. Groupes d'automorphismes de (,0) et équations différentielles ydy+=0, Publ. Soc. Math. France, Volume 116 (1988), pp. 459-488

[4] Ecalle, J. Les fonctions résurgentes. III : L'équation du pont et la classification analytique des objets locaux, Publ. Math. Orsay 85-05, 1985

[5] Loray, F. Réduction formelle des singularités cuspidales de champs de vecteurs analytiques, Differential Equations, Volume 158 (1999) no. 1, pp. 152-173

[6] Olver, F.W.J. Asymptotics and Special Functions, Academic Press, New York, 1974

[7] Ramis, J.-P. Les séries k-sommables et leurs applications, Complex Analysis, Microlocal Calcul and Relativistic Quantum Theory, Lecture Notes in Phys., 126, 1980, pp. 178-199

Cité par Sources :