Differential Geometry
Equivariant gerbes over compact simple Lie groups
[Gerbes equivariantes sur les groupes de Lie simples compacts]
Comptes Rendus. Mathématique, Tome 336 (2003) no. 3, pp. 251-256.

En utilisant des extensions S1-centrales de groupoı̈des, nous présentons, dans le cas d'un groupe simple compact G, un modèle de dimension infinie d'une S1-gerbe sur un champ différentiable G/G dont la classe de Dixmier–Douady correspond au générateur canonique de la cohomologie équivariante HG3(G).

Using groupoid S1-central extensions, we present, for a compact simple Lie group G, an infinite dimensional model of S1-gerbe over the differential stack G/G whose Dixmier–Douady class corresponds to the canonical generator of the equivariant cohomology HG3(G).

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)00024-9
Behrend, Kai 1 ; Xu, Ping 2 ; Zhang, Bin 3

1 Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver BC, V6T IZ2, Canada
2 Department of Mathematics, Pennsylvania State University, University Park, PA 16802, USA
3 Department of Mathematics, State University of New York at Stony Brook, Stony Brook, NY 11794-3600, USA
@article{CRMATH_2003__336_3_251_0,
     author = {Behrend, Kai and Xu, Ping and Zhang, Bin},
     title = {Equivariant gerbes over compact simple {Lie} groups},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {251--256},
     publisher = {Elsevier},
     volume = {336},
     number = {3},
     year = {2003},
     doi = {10.1016/S1631-073X(02)00024-9},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/S1631-073X(02)00024-9/}
}
TY  - JOUR
AU  - Behrend, Kai
AU  - Xu, Ping
AU  - Zhang, Bin
TI  - Equivariant gerbes over compact simple Lie groups
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 251
EP  - 256
VL  - 336
IS  - 3
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/S1631-073X(02)00024-9/
DO  - 10.1016/S1631-073X(02)00024-9
LA  - en
ID  - CRMATH_2003__336_3_251_0
ER  - 
%0 Journal Article
%A Behrend, Kai
%A Xu, Ping
%A Zhang, Bin
%T Equivariant gerbes over compact simple Lie groups
%J Comptes Rendus. Mathématique
%D 2003
%P 251-256
%V 336
%N 3
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/S1631-073X(02)00024-9/
%R 10.1016/S1631-073X(02)00024-9
%G en
%F CRMATH_2003__336_3_251_0
Behrend, Kai; Xu, Ping; Zhang, Bin. Equivariant gerbes over compact simple Lie groups. Comptes Rendus. Mathématique, Tome 336 (2003) no. 3, pp. 251-256. doi : 10.1016/S1631-073X(02)00024-9. http://archive.numdam.org/articles/10.1016/S1631-073X(02)00024-9/

[1] Alekseev, A.; Malkin, A.; Meinrenken, E. Lie group valued moment maps, J. Differential Geom., Volume 48 (1998), pp. 445-495

[2] Behrend, K.; Xu, P. S1-bundles and gerbes over differential stacks, C. R. Acad. Sci. Paris Sér. I, Volume 336 (2003)

[3] K. Behrend, P. Xu, Differential stacks and gerbes, in preparation

[4] Brylinski, J.-L. Gerbes on complex reductive Lie groups | arXiv

[5] Huebschmann, J.; Guruprasad, K.; Jeffrey, L.; Weinstein, A. Group systems, groupoids, and moduli spaces of parabolic bundles, Duke Math. J., Volume 89 (1997), pp. 377-412

[6] Meinrenken, E. The basic gerbe over a compact simple Lie group | arXiv

[7] Pressley, A.; Segal, G. Loop Groups, Oxford University Press, New York, 1986

[8] Weinstein, A. The symplectic structure on moduli space, The Floer Memorial Volume, Progr. Math., 133, 1995, pp. 627-635

[9] Weinstein, A.; Xu, P. Extensions of symplectic groupoids and quantization, J. Reine Angew. Math., Volume 417 (1991), pp. 159-189

[10] Xu, P. Morita equivalent symplectic groupoids (Dazord, P.; Weinstein, A., eds.), Symplectic Geometry, Groupoids, and Integrable Systems, Seminaire sud Rhodanien a Berkeley, 1989, 1991, pp. 291-311

Cité par Sources :