Nous montrons que la théorie non linéaire des plaques émerge comme Γ-limite de la théorie de l'élasticité tridimensionnelle. La démonstration repose sur un résultat de rigidité pour des fonctions . Nous montrons que la distance L2 de ∇v d'une rotation est bornée par un multiple de la distance L2 à l'ensemble SO(3) des rotations.
We show that nonlinear plate theory arises as a Γ-limit of three-dimensional nonlinear elasticity. A key ingredient in the proof is a sharp rigidity estimate for maps . We show that the L2 distance of ∇v from a single rotation is bounded by a multiple of the L2 distance from the set SO(3) of all rotations.
Accepté le :
Publié le :
@article{CRMATH_2002__334_2_173_0, author = {Friesecke, Gero and M\"uller, Stefan and James, Richard~D.}, title = {Rigorous derivation of nonlinear plate theory and geometric rigidity}, journal = {Comptes Rendus. Math\'ematique}, pages = {173--178}, publisher = {Elsevier}, volume = {334}, number = {2}, year = {2002}, doi = {10.1016/S1631-073X(02)02133-7}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/S1631-073X(02)02133-7/} }
TY - JOUR AU - Friesecke, Gero AU - Müller, Stefan AU - James, Richard D. TI - Rigorous derivation of nonlinear plate theory and geometric rigidity JO - Comptes Rendus. Mathématique PY - 2002 SP - 173 EP - 178 VL - 334 IS - 2 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/S1631-073X(02)02133-7/ DO - 10.1016/S1631-073X(02)02133-7 LA - en ID - CRMATH_2002__334_2_173_0 ER -
%0 Journal Article %A Friesecke, Gero %A Müller, Stefan %A James, Richard D. %T Rigorous derivation of nonlinear plate theory and geometric rigidity %J Comptes Rendus. Mathématique %D 2002 %P 173-178 %V 334 %N 2 %I Elsevier %U http://archive.numdam.org/articles/10.1016/S1631-073X(02)02133-7/ %R 10.1016/S1631-073X(02)02133-7 %G en %F CRMATH_2002__334_2_173_0
Friesecke, Gero; Müller, Stefan; James, Richard D. Rigorous derivation of nonlinear plate theory and geometric rigidity. Comptes Rendus. Mathématique, Tome 334 (2002) no. 2, pp. 173-178. doi : 10.1016/S1631-073X(02)02133-7. http://archive.numdam.org/articles/10.1016/S1631-073X(02)02133-7/
[1] Rigorous bounds for the Föppl–von Kármán theory of isotropically compressed plates, J. Nonlinear Sci., Volume 10 (2000), pp. 661-685
[2] Mathematical Elasticity, II: Theory of Plates, Elsevier, Amsterdam, 1997
[3] An Introduction to Γ-Convergence, Birkhäuser, 1993
[4] Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., Volume 58 (1975), pp. 842-850
[5] Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, 1992
[6] Energy estimates for the von Kármán model in thin-film blistering, J. Math. Phys., Volume 42 (2001), pp. 192-199
[7] Rotation and strain, Commun. Pure Appl. Math., Volume 14 (1961), pp. 391-413
[8] Bounds for deformations in terms of average strains (Shisha, O., ed.), Inequalities III, 1972, pp. 129-144
[9] Über das Gleichgewicht und die Bewegung einer elastischen Scheibe, J. Reine Angew. Math., Volume 40 (1850), pp. 51-88
[10] New integral estimates for deformations in terms of their nonlinear strains, Arch. Rat. Mech. Anal., Volume 78 (1982), pp. 131-172
[11] Weighted Sobolev Spaces, Wiley, New York, 1985
[12] Le modèle de membrane non linéaire comme limite variationelle de l'élasticité non linéaire tridimensionelle, C. R. Acad. Sci. Paris, Série I, Volume 317 (1993), pp. 221-226
[13] The nonlinear membrane model as a variational limit of nonlinear three-dimensional elasticity, J. Math. Pures Appl., Volume 73 (1995), pp. 549-578
[14] The membrane shell model in nonlinear elasticity: a variational asymptotic derivation, J. Nonlinear Sci., Volume 6 (1996), pp. 59-84
[15] A Lusin property of Sobolev functions, Indiana Univ. Math. J., Volume 26 (1977), pp. 645-651
[16] A Treatise on the Mathematical Theory of Elasticity, Cambridge University Press, Cambridge, 1927
[17] Sur une méthode pour résoudre les équations aux dérivées partielles du type elliptique, voisine de la variationnelle, Ann. Scuola Norm. Sup. Pisa, Volume 16 (1962), pp. 305-326
[18] Une justification partielle du modèle de plaque en flexion par Γ-convergence, C. R. Acad. Sci. Paris, Série I, Volume 332 (2001), pp. 587-592
[19] Liousville's theory on conformal mappings under minimal regularity assumptions, Sibirskii Math., Volume 8 (1967), pp. 69-85
[20] Total Curvature in Riemannian Geometry, John Wiley & Sons, New York, 1982
[21] Weakly Differentiable Functions, Springer-Verlag, 1989
Cité par Sources :