On se propose d'établir quelques propriétés des petits espaces de Lebesgue introduits par Fiorenza [7], notamment la convergence monotone de Lévi et des propriétés d'équivalence de normes. En combinant ces propriétés avec les inégalités de Poincaré–Sobolev pour le réarrangement relatif [11], nous donnons quelques estimations précises concernant les espaces de Sobolev associés à ces espaces et les régularités des solutions d'équations quasilinéaires lorsque les données sont dans ces espaces.
We prove some new properties of the small Lebesgue spaces introduced by Fiorenza [7]. Combining these properties with the Poincaré–Sobolev inequalities for the relative rearrangement (see [11]), we derive some new and precises estimates either for small Lebesgue–Sobolev spaces or for quasilinear equations with data in the small Lebesgue spaces.
Révisé le :
Publié le :
@article{CRMATH_2002__334_1_23_0, author = {Fiorenza, Alberto and Rakotoson, Jean-Michel}, title = {Petits espaces de {Lebesgue} et quelques applications}, journal = {Comptes Rendus. Math\'ematique}, pages = {23--26}, publisher = {Elsevier}, volume = {334}, number = {1}, year = {2002}, doi = {10.1016/S1631-073X(02)02199-4}, language = {fr}, url = {https://www.numdam.org/articles/10.1016/S1631-073X(02)02199-4/} }
TY - JOUR AU - Fiorenza, Alberto AU - Rakotoson, Jean-Michel TI - Petits espaces de Lebesgue et quelques applications JO - Comptes Rendus. Mathématique PY - 2002 SP - 23 EP - 26 VL - 334 IS - 1 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/S1631-073X(02)02199-4/ DO - 10.1016/S1631-073X(02)02199-4 LA - fr ID - CRMATH_2002__334_1_23_0 ER -
%0 Journal Article %A Fiorenza, Alberto %A Rakotoson, Jean-Michel %T Petits espaces de Lebesgue et quelques applications %J Comptes Rendus. Mathématique %D 2002 %P 23-26 %V 334 %N 1 %I Elsevier %U https://www.numdam.org/articles/10.1016/S1631-073X(02)02199-4/ %R 10.1016/S1631-073X(02)02199-4 %G fr %F CRMATH_2002__334_1_23_0
Fiorenza, Alberto; Rakotoson, Jean-Michel. Petits espaces de Lebesgue et quelques applications. Comptes Rendus. Mathématique, Tome 334 (2002) no. 1, pp. 23-26. doi : 10.1016/S1631-073X(02)02199-4. https://www.numdam.org/articles/10.1016/S1631-073X(02)02199-4/
[1] Sulle migliori costanti di maggiorazione per una classe di equazioni ellitiche degeneri, Ricerche Mat., Volume 27 (1978), pp. 413-428
[2] Sobolev imbedding into BMO, VMO, L∞, Ark. Mat., Volume 36 (1998), pp. 317-340
[3] Symmetrization techniques on unbounded domains: Application to a chemotaxis system on
[4] On the differentiability of functions in
[5] L∞ estimates for nonlinear elliptic problems with p-growth in the gradient, J. Inequal. Appl., Volume 3 (1999), pp. 109-125
[6] Some relations between pseudo-rearrangement and relative rearrangement, Nonlinear Anal., Volume 41 (2000) no. 7–8, pp. 855-869
[7] Duality and reflexivity in grand Lebesgue spaces, Collect. Math., Volume 51 (2000) no. 2, pp. 131-148
[8] Regularity and comparison results in Grand Sobolev spaces for parabolic equations with measure data, Appl. Math. Lett., Volume 14 (2001), pp. 979-981
[9] On the integrability of the Jacobian under minimal hypotheses, Arch. Rational Mech. Anal., Volume 119 (1992), pp. 129-143
[10] Directional derivate of the increasing rearrangement mapping and application to a queer differential equation in plasma physics, Duke Math. J., Volume 48 (1981), pp. 475-495
[11] Rakotoson J.M., General pointwise relations for the relative rearrangement and applications (to appear)
[12] Rakotoson J.M., Some new applications of the pointwise relations for the relative rearrangement, Differential Integral Equations (to appear)
[13] A co-area formula with applications to monotone rearrangement and to regularity, Arch. Rational Mech. Anal., Volume 109 (1990) no. 3, pp. 213-238
[14] Editor's note, On the differentiability of functions in
- On Hardy type inequalities in grand Lebesgue spacesLp)for 0
, Linear and Multilinear Algebra, Volume 70 (2022) no. 21, p. 6053 | DOI:10.1080/03081087.2021.1944968
- Embeddings in Grand Variable Exponent Function Spaces, Results in Mathematics, Volume 76 (2021) no. 3 | DOI:10.1007/s00025-021-01450-1
- Sobolev‐type inequalities for potentials in grand variable exponent Lebesgue spaces, Mathematische Nachrichten, Volume 292 (2019) no. 10, p. 2174 | DOI:10.1002/mana.201800239
- Density, Duality and Preduality in Grand Variable Exponent Lebesgue and Morrey Spaces, Mediterranean Journal of Mathematics, Volume 15 (2018) no. 3 | DOI:10.1007/s00009-018-1145-5
- Fully measurable small Lebesgue spaces, Journal of Mathematical Analysis and Applications, Volume 447 (2017) no. 1, p. 550 | DOI:10.1016/j.jmaa.2016.10.034
- Boundedness of sublinear operators in weighted grand Morrey spaces, Mathematical Notes, Volume 102 (2017) no. 5-6, p. 664 | DOI:10.1134/s0001434617110062
- Integral operators with homogeneous kernels in grand Lebesgue spaces, Mathematical Notes, Volume 102 (2017) no. 5-6, p. 710 | DOI:10.1134/s0001434617110104
- Ограниченность сублинейных операторов в весовых гранд-пространствах Морри, Математические заметки, Volume 102 (2017) no. 5, p. 721 | DOI:10.4213/mzm11643
- Интегральные операторы с однородными ядрами в гранд-пространствах Лебега, Математические заметки, Volume 102 (2017) no. 5, p. 775 | DOI:10.4213/mzm11640
- Generalization of the notion of grand Lebesgue space, Russian Mathematics, Volume 58 (2014) no. 4, p. 35 | DOI:10.3103/s1066369x14040057
- A Note on Boundedness of Operators in Grand Grand Morrey Spaces, Advances in Harmonic Analysis and Operator Theory (2013), p. 349 | DOI:10.1007/978-3-0348-0516-2_19
- Some estimates in GΓ(p,m,w) spaces, Journal of Mathematical Analysis and Applications, Volume 340 (2008) no. 2, p. 793 | DOI:10.1016/j.jmaa.2007.09.013
Cité par 12 documents. Sources : Crossref