Petits espaces de Lebesgue et quelques applications
Comptes Rendus. Mathématique, Tome 334 (2002) no. 1, pp. 23-26.

On se propose d'établir quelques propriétés des petits espaces de Lebesgue introduits par Fiorenza [7], notamment la convergence monotone de Lévi et des propriétés d'équivalence de normes. En combinant ces propriétés avec les inégalités de Poincaré–Sobolev pour le réarrangement relatif [11], nous donnons quelques estimations précises concernant les espaces de Sobolev associés à ces espaces et les régularités des solutions d'équations quasilinéaires lorsque les données sont dans ces espaces.

We prove some new properties of the small Lebesgue spaces introduced by Fiorenza [7]. Combining these properties with the Poincaré–Sobolev inequalities for the relative rearrangement (see [11]), we derive some new and precises estimates either for small Lebesgue–Sobolev spaces or for quasilinear equations with data in the small Lebesgue spaces.

Reçu le :
Révisé le :
Publié le :
DOI : 10.1016/S1631-073X(02)02199-4
Fiorenza, Alberto 1 ; Rakotoson, Jean-Michel 2

1 Dipartimento di Costruzioni e Metodi Matematici in Architettura, Universitá di Napoli “Federico II”, via Monteoliveto, 3, I-80134 Napoli, Italy
2 Laboratoire d'applications des mathématiques, Téléport 2 Département de mathématiques, Université de Poitiers, BP 30179, 86962 Futuroscope Chasseneuil cedex, France
@article{CRMATH_2002__334_1_23_0,
     author = {Fiorenza, Alberto and Rakotoson, Jean-Michel},
     title = {Petits espaces de {Lebesgue} et quelques applications},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {23--26},
     publisher = {Elsevier},
     volume = {334},
     number = {1},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02199-4},
     language = {fr},
     url = {https://www.numdam.org/articles/10.1016/S1631-073X(02)02199-4/}
}
TY  - JOUR
AU  - Fiorenza, Alberto
AU  - Rakotoson, Jean-Michel
TI  - Petits espaces de Lebesgue et quelques applications
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 23
EP  - 26
VL  - 334
IS  - 1
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/S1631-073X(02)02199-4/
DO  - 10.1016/S1631-073X(02)02199-4
LA  - fr
ID  - CRMATH_2002__334_1_23_0
ER  - 
%0 Journal Article
%A Fiorenza, Alberto
%A Rakotoson, Jean-Michel
%T Petits espaces de Lebesgue et quelques applications
%J Comptes Rendus. Mathématique
%D 2002
%P 23-26
%V 334
%N 1
%I Elsevier
%U https://www.numdam.org/articles/10.1016/S1631-073X(02)02199-4/
%R 10.1016/S1631-073X(02)02199-4
%G fr
%F CRMATH_2002__334_1_23_0
Fiorenza, Alberto; Rakotoson, Jean-Michel. Petits espaces de Lebesgue et quelques applications. Comptes Rendus. Mathématique, Tome 334 (2002) no. 1, pp. 23-26. doi : 10.1016/S1631-073X(02)02199-4. https://www.numdam.org/articles/10.1016/S1631-073X(02)02199-4/

[1] Alvino, A.; Trombetti, G. Sulle migliori costanti di maggiorazione per una classe di equazioni ellitiche degeneri, Ricerche Mat., Volume 27 (1978), pp. 413-428

[2] Cianchi, A.; Pick, L. Sobolev imbedding into BMO, VMO, L, Ark. Mat., Volume 36 (1998), pp. 317-340

[3] Diaz, J.I.; Nagai, T.; Rakotoson, J.M. Symmetrization techniques on unbounded domains: Application to a chemotaxis system on N, J. Differential Equations, Volume 145 (1998) no. 1, pp. 156-183

[4] Devore, R.A.; Sharpley, R.C. On the differentiability of functions in N, Proc. Amer. Math. Soc., Volume 91 (1984) no. 2, pp. 326-328

[5] Ferone, V.; Posteraro, M.R.; Rakotoson, J.M. L estimates for nonlinear elliptic problems with p-growth in the gradient, J. Inequal. Appl., Volume 3 (1999), pp. 109-125

[6] Ferone, A.; Volpicelli, R. Some relations between pseudo-rearrangement and relative rearrangement, Nonlinear Anal., Volume 41 (2000) no. 7–8, pp. 855-869

[7] Fiorenza, A. Duality and reflexivity in grand Lebesgue spaces, Collect. Math., Volume 51 (2000) no. 2, pp. 131-148

[8] Fiorenza, A.; Mercaldo, A.; Rakotoson, J.M. Regularity and comparison results in Grand Sobolev spaces for parabolic equations with measure data, Appl. Math. Lett., Volume 14 (2001), pp. 979-981

[9] Iwaniec, T.; Sbordone, C. On the integrability of the Jacobian under minimal hypotheses, Arch. Rational Mech. Anal., Volume 119 (1992), pp. 129-143

[10] Mossino, J.; Temam, R. Directional derivate of the increasing rearrangement mapping and application to a queer differential equation in plasma physics, Duke Math. J., Volume 48 (1981), pp. 475-495

[11] Rakotoson J.M., General pointwise relations for the relative rearrangement and applications (to appear)

[12] Rakotoson J.M., Some new applications of the pointwise relations for the relative rearrangement, Differential Integral Equations (to appear)

[13] Rakotoson, J.M.; Temam, R. A co-area formula with applications to monotone rearrangement and to regularity, Arch. Rational Mech. Anal., Volume 109 (1990) no. 3, pp. 213-238

[14] Stein, E.M. Editor's note, On the differentiability of functions in N, Ann. Math., Volume 113 (1981) no. 2, pp. 381-385

  • Bandaliyev, Rovshan A.; Safarova, Kamala H. On Hardy type inequalities in grand Lebesgue spacesLp)for 0 , Linear and Multilinear Algebra, Volume 70 (2022) no. 21, p. 6053 | DOI:10.1080/03081087.2021.1944968
  • Edmunds, David E.; Kokilashvili, Vakhtang; Meskhi, Alexander Embeddings in Grand Variable Exponent Function Spaces, Results in Mathematics, Volume 76 (2021) no. 3 | DOI:10.1007/s00025-021-01450-1
  • Edmunds, David E.; Kokilashvili, Vakhtang; Meskhi, Alexander Sobolev‐type inequalities for potentials in grand variable exponent Lebesgue spaces, Mathematische Nachrichten, Volume 292 (2019) no. 10, p. 2174 | DOI:10.1002/mana.201800239
  • Meskhi, Alexander; Sawano, Yoshihiro Density, Duality and Preduality in Grand Variable Exponent Lebesgue and Morrey Spaces, Mediterranean Journal of Mathematics, Volume 15 (2018) no. 3 | DOI:10.1007/s00009-018-1145-5
  • Anatriello, Giuseppina; Formica, Maria Rosaria; Giova, Raffaella Fully measurable small Lebesgue spaces, Journal of Mathematical Analysis and Applications, Volume 447 (2017) no. 1, p. 550 | DOI:10.1016/j.jmaa.2016.10.034
  • Kokilashvili, V.; Meskhi, A.; Rafeiro, H. Boundedness of sublinear operators in weighted grand Morrey spaces, Mathematical Notes, Volume 102 (2017) no. 5-6, p. 664 | DOI:10.1134/s0001434617110062
  • Umarkhadzhiev, S. M. Integral operators with homogeneous kernels in grand Lebesgue spaces, Mathematical Notes, Volume 102 (2017) no. 5-6, p. 710 | DOI:10.1134/s0001434617110104
  • Kokilashvili, Vakhtang Mikhailovich; Meskhi, Alexander Nodarovich; Rafeiro, Humberto Ограниченность сублинейных операторов в весовых гранд-пространствах Морри, Математические заметки, Volume 102 (2017) no. 5, p. 721 | DOI:10.4213/mzm11643
  • Umarkhadzhiev, Salaudin Musaevich Интегральные операторы с однородными ядрами в гранд-пространствах Лебега, Математические заметки, Volume 102 (2017) no. 5, p. 775 | DOI:10.4213/mzm11640
  • Umarkhadzhiev, S. M. Generalization of the notion of grand Lebesgue space, Russian Mathematics, Volume 58 (2014) no. 4, p. 35 | DOI:10.3103/s1066369x14040057
  • Rafeiro, Humberto A Note on Boundedness of Operators in Grand Grand Morrey Spaces, Advances in Harmonic Analysis and Operator Theory (2013), p. 349 | DOI:10.1007/978-3-0348-0516-2_19
  • Fiorenza, A.; Rakotoson, J.M. Some estimates in GΓ(p,m,w) spaces, Journal of Mathematical Analysis and Applications, Volume 340 (2008) no. 2, p. 793 | DOI:10.1016/j.jmaa.2007.09.013

Cité par 12 documents. Sources : Crossref