Classification of positive quaternion-Kähler 12-manifolds
[Classification de variétés Kähleriennes quaternioniques positives de dimension 12]
Comptes Rendus. Mathématique, Tome 334 (2002) no. 1, pp. 43-46.

Dans cette Note, nous démontrons que les variétés complètes Kähleriennes quaternioniques de courbure scalaire positive et de dimension 12 appartiennent à la liste d'espaces symétriques donnée par Wolf [12].

We prove that the 12-dimensional complete quaternion-Kähler manifolds with positive scalar curvature belong to the list of symmetric spaces given by Wolf [12].

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02209-4
Herrera, Haydeé 1 ; Herrera, Rafael 2

1 Department of Mathematics, Tufts University, Medford, MA 02155, USA
2 Department of Mathematics, University of California, Riverside, CA 92521, USA
@article{CRMATH_2002__334_1_43_0,
     author = {Herrera, Hayde\'e and Herrera, Rafael},
     title = {Classification of positive {quaternion-K\"ahler} $ \mathrm{12}$-manifolds},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {43--46},
     publisher = {Elsevier},
     volume = {334},
     number = {1},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02209-4},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/S1631-073X(02)02209-4/}
}
TY  - JOUR
AU  - Herrera, Haydeé
AU  - Herrera, Rafael
TI  - Classification of positive quaternion-Kähler $ \mathrm{12}$-manifolds
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 43
EP  - 46
VL  - 334
IS  - 1
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/S1631-073X(02)02209-4/
DO  - 10.1016/S1631-073X(02)02209-4
LA  - en
ID  - CRMATH_2002__334_1_43_0
ER  - 
%0 Journal Article
%A Herrera, Haydeé
%A Herrera, Rafael
%T Classification of positive quaternion-Kähler $ \mathrm{12}$-manifolds
%J Comptes Rendus. Mathématique
%D 2002
%P 43-46
%V 334
%N 1
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/S1631-073X(02)02209-4/
%R 10.1016/S1631-073X(02)02209-4
%G en
%F CRMATH_2002__334_1_43_0
Herrera, Haydeé; Herrera, Rafael. Classification of positive quaternion-Kähler $ \mathrm{12}$-manifolds. Comptes Rendus. Mathématique, Tome 334 (2002) no. 1, pp. 43-46. doi : 10.1016/S1631-073X(02)02209-4. http://archive.numdam.org/articles/10.1016/S1631-073X(02)02209-4/

[1] Bielawski, R. Complete hyper-Kähler 4n-manifolds with a local tri-Hamiltonian R n -action, Math. Ann., Volume 314 (1999) no. 3, pp. 505-528

[2] Dancer, A.; Swann, A. Quaternionic Kähler manifolds of cohomogeneity one, Internat. J. Math., Volume 10 (1999) no. 5, pp. 541-570

[3] Herrera R., Ph.D. thesis, Oxford, 1997

[4] Herrera H., Herrera R., A ^-genus on non-spin manifolds with S1 actions and the classification of positive quaternion-Kähler 12-manifolds, IHÉS Preprint, 2001

[5] Herrera H., Herrera R., Elliptic genus on non-spin manifolds, Preprint, 2001

[6] Hitchin, N. Kählerian twistor spaces, Proc. London Math. Soc., Volume 43 (1981) no. 3, pp. 133-150

[7] LeBrun, C. Fano manifolds, contact structures, and quaternionic geometry, Internat. J. Math., Volume 6 (1995) no. 3, pp. 419-437

[8] LeBrun, C.R.; Salamon, S.M. Strong rigidity of positive quaternion-Kähler manifolds, Invent. Math., Volume 118 (1994), pp. 109-132

[9] Podestà, F.; Verdiani, L. A note on quaternion-Kähler manifolds, Internat. J. Math., Volume 11 (2000) no. 2, pp. 279-283

[10] Poon, Y.S.; Salamon, S.M. Eight-dimensional quaternionic Kähler manifolds with positive scalar curvature, J. Differential Geometry, Volume 33 (1991), pp. 363-378

[11] Salamon, S.M. Quaternionic Kähler manifolds, Invent. Math., Volume 67 (1982), pp. 143-171

[12] Wolf, J.A. Complex homogeneous contact structures and quaternionic symmetric spaces, J. Math. Mech., Volume 14 (1965), pp. 1033-1047

Cité par Sources :