A general reduction scheme for the time-dependent Born–Oppenheimer approximation
[Un schéma général de réduction pour l'approximation de Born–Oppenheimer dépendant du temps]
Comptes Rendus. Mathématique, Tome 334 (2002) no. 3, pp. 185-188.

On construit un schéma général de réduction pour l'étude du propagateur quantique de l'opérateur de Schrödinger moléculaire. Cette réduction est faite modulo une erreur d'ordre infini (respectivement exponentielle) par rapport à la racine carrée de l'inverse de la masse des noyaux lorsque les interactions sont supposées C (resp. analytiques). On applique ensuite ce résultat au cas où l'un des niveaux électroniques reste isolé du reste du spectre électronique.

We construct a general reduction scheme for the study of the quantum propagator of molecular Schrödinger operators with smooth potentials. This reduction is made up to infinitely (resp. exponentially) small error terms with respect to the inverse square root of the mass of the nuclei, depending on the C (resp. analytic) smoothness of the interactions. Then we apply this result to the case when an electronic level is isolated from the rest of the spectrum of the electronic Hamiltonian.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02212-4
Martinez, André 1 ; Sordoni, Vania 1

1 Dipartimento di Matematica, Università di Bologna, 40127 Bologna, Italie
@article{CRMATH_2002__334_3_185_0,
     author = {Martinez, Andr\'e and Sordoni, Vania},
     title = {A general reduction scheme for the time-dependent {Born{\textendash}Oppenheimer} approximation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {185--188},
     publisher = {Elsevier},
     volume = {334},
     number = {3},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02212-4},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/S1631-073X(02)02212-4/}
}
TY  - JOUR
AU  - Martinez, André
AU  - Sordoni, Vania
TI  - A general reduction scheme for the time-dependent Born–Oppenheimer approximation
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 185
EP  - 188
VL  - 334
IS  - 3
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/S1631-073X(02)02212-4/
DO  - 10.1016/S1631-073X(02)02212-4
LA  - en
ID  - CRMATH_2002__334_3_185_0
ER  - 
%0 Journal Article
%A Martinez, André
%A Sordoni, Vania
%T A general reduction scheme for the time-dependent Born–Oppenheimer approximation
%J Comptes Rendus. Mathématique
%D 2002
%P 185-188
%V 334
%N 3
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/S1631-073X(02)02212-4/
%R 10.1016/S1631-073X(02)02212-4
%G en
%F CRMATH_2002__334_3_185_0
Martinez, André; Sordoni, Vania. A general reduction scheme for the time-dependent Born–Oppenheimer approximation. Comptes Rendus. Mathématique, Tome 334 (2002) no. 3, pp. 185-188. doi : 10.1016/S1631-073X(02)02212-4. http://archive.numdam.org/articles/10.1016/S1631-073X(02)02212-4/

[1] Hagedorn, G.; Joye, A. A time-dependent Born–Oppenheimer approximation with exponentially small error estimates, Comm. Math. Phys., Volume 223 (2001) no. 3, pp. 583-626

[2] Klein, M.; Martinez, A.; Seiler, R.; Wang, X.P. On the Born–Oppenheimer expansion for polyatomic molecules, Comm. Math. Phys., Volume 143 (1992) no. 3, pp. 607-639

[3] A. Martinez, An Introduction to Semiclassical Analysis, UTX Series, Springer-Verlag, New-York, 2002 (to appear)

[4] A. Martinez, V. Sordoni, On the time-dependent Born–Oppenheimer approximation with smooth potentials, Preprint, Bologna, 2001 and Texas mp-arc n. 01-37, 2001

[5] Melin, A.; Sjöstrand, J. Fourier integral operators with complex phase functions and parametrix for an interior boundary value problem, Comm. Partial Differential Equations, Volume 1 (1976), pp. 313-400

[6] G. Nenciu, V. Sordoni, Semiclassical limit for multistate Klein–Gordon systems: almost invariant subspaces and scattering theory, Preprint, Bologna, 2001 and Texas mp-arc n. 01-36, 2001

[7] Robert, D. Autour de l'approximation semi-classique, Birkhäuser, 1987

[8] D. Robert, Remarks on asymptotic solutions for time dependent Schrödinger equations, Preprint, Nantes, 2000

[9] Sjöstrand, J. Singularités analytiques microlocales, Astérisque, Volume 95 (1982)

[10] V. Sordoni, Reduction scheme for semiclassical operator-valued Schrödinger type equation and application to scattering, Preprint, Bologna, 2001 and Texas mp-arc n. 01-272, 2001

[11] Spohn, H.; Teufel, S. Adiabatic decoupling and time-dependent Born–Oppenheimer theory, Comm. Math. Phys., Volume 224 (2001) no. 1, pp. 113-132

Cité par Sources :

Investigation supported by University of Bologna. Funds for selected research topics.