Stabilization for viscous compressible heat-conducting media equations with nonmonotone state functions
[Stabilisation pour un milieu continu compressible avec pression non monotone]
Comptes Rendus. Mathématique, Tome 334 (2002) no. 2, pp. 119-124.

Nous étudions l'évolution 1d d'un milieu continu compressible conducteur de la chaleur. La pression est donnée par p(η,θ)=p0(η)+p1(η)θ, où p0 et p1 sont des fonctions non monotones assez générales pour permettre de traiter à la fois des modèles de fluides nucléaires et des solides thermo-visco-élastiques. Pour un problème aux limites d'évolution associé, avec grandes données, nous prouvons la stabilisation pour t→∞ au sens suivant : convergence ponctuelle et dans Lq pour le volume spécifique η, dans Lq pour la vitesse v, pour tout q∈[2,∞), et dans L2 pour la temperature θ.

We consider the system of quasilinear equations for 1d-motion of viscous compressible heat-conducting media. The state function has the form p(η,θ)=p0(η)+p1(η)θ, with general nonmonotone p0 and p1, which allows us to treat both nuclear fluids and thermoviscoelastic solids (for fluids, p, η, and θ are the pressure, specific volume, and temperature). For an initial boundary value problem with large data, we establish stabilization as t→∞: pointwise and in Lq for η, in Lq for v (the velocity), for any q∈[2,∞), and in L2 for θ.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02227-6
Ducomet, Bernard 1 ; Zlotnik, Alexander 2

1 CEA-Département de physique théorique et appliquée, BP 12, 91680 Bruyères le Châtel, France
2 MPEI–Department of Mathematical Modelling, Krasnokazarmennaja 14, 111250 Moscow, Russia
@article{CRMATH_2002__334_2_119_0,
     author = {Ducomet, Bernard and Zlotnik, Alexander},
     title = {Stabilization for viscous compressible heat-conducting media equations with nonmonotone state functions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {119--124},
     publisher = {Elsevier},
     volume = {334},
     number = {2},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02227-6},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/S1631-073X(02)02227-6/}
}
TY  - JOUR
AU  - Ducomet, Bernard
AU  - Zlotnik, Alexander
TI  - Stabilization for viscous compressible heat-conducting media equations with nonmonotone state functions
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 119
EP  - 124
VL  - 334
IS  - 2
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/S1631-073X(02)02227-6/
DO  - 10.1016/S1631-073X(02)02227-6
LA  - en
ID  - CRMATH_2002__334_2_119_0
ER  - 
%0 Journal Article
%A Ducomet, Bernard
%A Zlotnik, Alexander
%T Stabilization for viscous compressible heat-conducting media equations with nonmonotone state functions
%J Comptes Rendus. Mathématique
%D 2002
%P 119-124
%V 334
%N 2
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/S1631-073X(02)02227-6/
%R 10.1016/S1631-073X(02)02227-6
%G en
%F CRMATH_2002__334_2_119_0
Ducomet, Bernard; Zlotnik, Alexander. Stabilization for viscous compressible heat-conducting media equations with nonmonotone state functions. Comptes Rendus. Mathématique, Tome 334 (2002) no. 2, pp. 119-124. doi : 10.1016/S1631-073X(02)02227-6. http://archive.numdam.org/articles/10.1016/S1631-073X(02)02227-6/

[1] Amosov, A.A.; Zlotnik, A.A. Global generalized solutions of the equations of the one-dimensional motion of a viscous heat-conducting gas, Soviet Math. Dokl., Volume 38 (1989), pp. 1-5

[2] Antontsev, S.N.; Kazhikhov, A.V.; Monakhov, V.N. Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, North-Holland, 1990

[3] Ducomet, B. Simplified models of quantum fluids in nuclear physics Mathematica Bohemica, 126 (2001), pp. 323-336

[4] Ducomet B., Zlotnik A.A., Stabilization for equations of one-dimensional viscous heat-conducting media with nonmonotone equation of state (in preparation)

[5] Hsiao, L. Quasilinear Hyperbolic Systems and Dissipative Mechanisms, World Scientific, 1997

[6] Hsiao, L.; Luo, T. Large-time behaviour of solutions to the equations of one-dimensional nonlinear thermoviscoelasticity, Quart. Appl. Math., Volume 56 (1998), pp. 201-219

[7] Jiang, S. On the asymptotic behavior of the motion of a viscous heat-conducting one-dimensional real gas, Math. Z., Volume 216 (1994), pp. 317-336

[8] Nagasawa, T. On the outer pressure problem of the one-dimensional polytropic ideal gas, Japan J. Appl. Math., Volume 15 (1988), pp. 53-85

[9] Pego, R. Phase transitions in one-dimensional nonlinear viscoelasticity: admissibility and stability, Arch. Rational Mech. Anal., Volume 97 (1987), pp. 353-394

[10] Qin, Y. Global existence and large-time behaviour of the solution to the system in one-dimensional nonlinear thermoviscoelasticity, Quart. Appl. Math., Volume 59 (2001), pp. 113-142

[11] Racke, R.; Zheng, S. Global existence and asymptotic behaviour in nonlinear thermoviscoelasticity, J. Differential Equations, Volume 134 (1997), pp. 46-67

[12] Shen, W.; Zheng, S.; Zhu, P. Global existence and asymptotic behaviour of weak solutions to nonlinear thermoviscoelastic systems with clamped boundary conditions, Quart. Appl. Math., Volume 57 (1999), pp. 93-116

[13] Zlotnik, A.A. On equations for one-dimensional motion of a viscous barotropic gas in the presence of a body force, Siberian Math. J., Volume 33 (1992), pp. 798-815

[14] Zlotnik, A.A. Uniform estimates and the stabilization of symmetric solutions to one system of quasilinear equations, Differential Equations, Volume 36 (2000), pp. 701-716

[15] Zlotnik, A.A.; Bao, N.Z. Properties and asymptotic behaviour of solutions of some problems of one-dimensional motion of a viscous barotropic gas, Math. Notes, Volume 55 (1994), pp. 471-482

Cité par Sources :