On considère une substitution primitive ϕ sur l'alphabet {a,b} ayant deux points fixes ξa et ξb (commençant respectivement par a et b). Nous montrons que la substitution ϕ est inversible si et seulement si l'on a ξa=abξ et ξb=baξ.
Let ϕ be a primitive substitution on a two-letter alphabet {a,b} having two fixed points ξa and ξb. We show that the substitution ϕ is invertible if and only if one has ξa=abξ and ξb=baξ.
Accepté le :
Publié le :
@article{CRMATH_2002__334_9_727_0, author = {Wen, Zhi-Xiong and Wen, Zhi-Ying and Wu, Jun}, title = {On invertible substitutions with two fixed points}, journal = {Comptes Rendus. Math\'ematique}, pages = {727--731}, publisher = {Elsevier}, volume = {334}, number = {9}, year = {2002}, doi = {10.1016/S1631-073X(02)02235-5}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/S1631-073X(02)02235-5/} }
TY - JOUR AU - Wen, Zhi-Xiong AU - Wen, Zhi-Ying AU - Wu, Jun TI - On invertible substitutions with two fixed points JO - Comptes Rendus. Mathématique PY - 2002 SP - 727 EP - 731 VL - 334 IS - 9 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/S1631-073X(02)02235-5/ DO - 10.1016/S1631-073X(02)02235-5 LA - en ID - CRMATH_2002__334_9_727_0 ER -
%0 Journal Article %A Wen, Zhi-Xiong %A Wen, Zhi-Ying %A Wu, Jun %T On invertible substitutions with two fixed points %J Comptes Rendus. Mathématique %D 2002 %P 727-731 %V 334 %N 9 %I Elsevier %U http://archive.numdam.org/articles/10.1016/S1631-073X(02)02235-5/ %R 10.1016/S1631-073X(02)02235-5 %G en %F CRMATH_2002__334_9_727_0
Wen, Zhi-Xiong; Wen, Zhi-Ying; Wu, Jun. On invertible substitutions with two fixed points. Comptes Rendus. Mathématique, Tome 334 (2002) no. 9, pp. 727-731. doi : 10.1016/S1631-073X(02)02235-5. http://archive.numdam.org/articles/10.1016/S1631-073X(02)02235-5/
[1] Berstel J., Mot de Fibonacci, Séminaire d'informatique théorique, L.I.T.P., Paris, Année (1980/1981) 57–78
[2] Decomposition theorem for invertible substitution, Osaka J. Math., Volume 34 (1998), pp. 821-834
[3] Mignosi F., Ph.D. thesis, L.I.T.P., 92.01
[4] Morphismes sturmiens et règles de Rauzy, J. Théorie des Nombres de Bordeaux, Volume 5 (1993), pp. 221-233
[5] Die Isomorphismen der allgemeinen unendlichen Gruppe mit zwei Erzeugenden, Math. Ann., Volume 78 (1918), pp. 385-397
[6] Fibonacci morphisms and Sturmian words, Theoret. Comput. Sci., Volume 88 (1991), pp. 365-384
[7] Local isomorphism of the invertible substitutions, C. R. Acad. Sci. Paris, Série I, Volume 318 (1994), pp. 299-304
[8] Some properties of the singular words of the Fibonacci word, European J. Combin., Volume 15 (1994), pp. 587-598
[9] Factor properties of infinite words generated by a class of invertible substitution, 5th Conference Formal Power Series and Algebraic Combinatorics, Florence, 1993, pp. 455-466
[10] Wen Z.-X., Wen Z.-Y., Wu J., Some properties of Fibonacci sequence, Preprint
Cité par Sources :
☆ Supported by the Special Funds for Major State Basic Research Projects of China and Morningside Center of Mathematics (CAS).