Soit M une variété différentiable de dimension n qui admet un difféomorphisme de type quasi-Anosov. Si n=3 alors on a l'altenative suivante, ou bien , et dans ce cas le difféomorphisme est en fait d'Anosov, ou bien le goupe fondamental de M contient une copie de . Si n=4, alors Π1(M) contient une copie de , pourvu que le difféomorphisme ne soit pas d'Anosov.
Let M be an n-dimensional manifold supporting a quasi-Anosov diffeomorphism. If n=3 then either , in which case the diffeomorphisms is Anosov, or else its fundamental group contains a copy of . If n=4 then Π1(M) contains a copy of , provided that the diffeomorphism is not Anosov.
Accepté le :
Publié le :
@article{CRMATH_2002__334_4_321_0, author = {Rodriguez Hertz, Jana and Ures, Ra\'ul and Vieitez, Jos\'e L.}, title = {On manifolds supporting {quasi-Anosov} diffeomorphisms}, journal = {Comptes Rendus. Math\'ematique}, pages = {321--323}, publisher = {Elsevier}, volume = {334}, number = {4}, year = {2002}, doi = {10.1016/S1631-073X(02)02260-4}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/S1631-073X(02)02260-4/} }
TY - JOUR AU - Rodriguez Hertz, Jana AU - Ures, Raúl AU - Vieitez, José L. TI - On manifolds supporting quasi-Anosov diffeomorphisms JO - Comptes Rendus. Mathématique PY - 2002 SP - 321 EP - 323 VL - 334 IS - 4 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/S1631-073X(02)02260-4/ DO - 10.1016/S1631-073X(02)02260-4 LA - en ID - CRMATH_2002__334_4_321_0 ER -
%0 Journal Article %A Rodriguez Hertz, Jana %A Ures, Raúl %A Vieitez, José L. %T On manifolds supporting quasi-Anosov diffeomorphisms %J Comptes Rendus. Mathématique %D 2002 %P 321-323 %V 334 %N 4 %I Elsevier %U http://archive.numdam.org/articles/10.1016/S1631-073X(02)02260-4/ %R 10.1016/S1631-073X(02)02260-4 %G en %F CRMATH_2002__334_4_321_0
Rodriguez Hertz, Jana; Ures, Raúl; Vieitez, José L. On manifolds supporting quasi-Anosov diffeomorphisms. Comptes Rendus. Mathématique, Tome 334 (2002) no. 4, pp. 321-323. doi : 10.1016/S1631-073X(02)02260-4. http://archive.numdam.org/articles/10.1016/S1631-073X(02)02260-4/
[1] A quasi-Anosov diffeomorphism that is not Anosov, Trans. Amer. Math. Soc., Volume 223 (1976), pp. 267-278
[2] Expansive homeomorphisms of surfaces are pseudo-Anosov, Osaka J. Math., Volume 27 (1990), pp. 117-162
[3] Dynamical systems of expansive maps on compact manifolds, Sugaku Expo., Volume 5 (1992), pp. 133-154
[4] Expansive homeomorphisms of surfaces, Bol. Soc. Brasil. Mat., Volume 20 (1989) no. 1, pp. 113-133
[5] Quasi-Anosov diffeomorphisms and hyperbolic manifolds, Trans. Amer. Math. Soc., Volume 229 (1977), pp. 351-370
[6] Expansive diffeomorphisms, Lecture Notes in Math., 468, Springer-Verlag, 1975, pp. 162-174
[7] R. Mañé, Personal communication
[8] Hyperbolic attractors of diffeomorphisms, Russian Math. Surveys, Volume 35 (1980) no. 3, pp. 109-121
[9] On hyperbolic attractors of diffeomorphisms (the non-orientable case), Russian Math. Surveys, Volume 35 (1980) no. 4, pp. 186-187
[10] Differentiable dynamical systems, Bull. Amer. Math. Soc., Volume 73 (1967), pp. 747-817
[11] J. Vieitez, Lyapunov functions and expansive diffeomorphisms on 3D-manifolds, Ergodic Theory Dynam. Systems (to appear)
Cité par Sources :
☆ The first author was partially supported by a grant from PEDECIBA. The second author was partially supported by CONICYT, Fondo Clemente Estable.