On the maximum principle for second-order elliptic operators in unbounded domains
[Un principe du maximum pour opérateurs elliptiques du second ordre dans des domaines non bornés]
Comptes Rendus. Mathématique, Tome 334 (2002) no. 5, pp. 359-363.

On considère le principe du maximum pour des opérateurs elliptiques du sécond ordre du type Lu=aij(x)uxixj+c(x)u dans des domaines non bornés de R n . En utilisant une condition géométrique, déjà considérée par Berestycki, Nirenberg et Varadhan dans [2] et une inégalité de Harnack faible due à Trudinger, Cabré [3] est arrivé à démontrer l'estimation ABP (Alexandroff–Bakelman–Pucci) pour une large classe de domaines non bornés, en obténant le principe du maximum pour des opérateurs elliptiques généraux. Dans cette Note nous introduisons une forme faible de cette condition géométrique et nous démontrons que cela suffit à obtenir le principe du maximum pour une classe plus large de domaines.

We are concerned with the maximum principle for second-order elliptic operators of the kind Lu=aij(x)uxixj+c(x)u in unbounded domains of R n . Using a geometric condition, already considered by Berestycki, Nirenberg and Varadhan in [2] and a weak boundary Harnack inequality due to Trudinger, Cabré [3] was able to prove the ABP (Alexandroff–Bakelman–Pucci) estimate for a large class of unbounded domains, obtaining as a consequence the maximum principle for general elliptic operators. In this Note we introduce a weak form of the above geometric condition and we show that in the case c⩽0 this is enough to obtain the maximum principle for a larger class of domains.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02267-7
Cafagna, Vittorio 1 ; Vitolo, Antonio 1

1 Dipartimento di Matematica e Informatica, Facoltà di Scienze, Università di Salerno, via Salvador Allende, 84081 Baronissi (SA), Italy
@article{CRMATH_2002__334_5_359_0,
     author = {Cafagna, Vittorio and Vitolo, Antonio},
     title = {On the maximum principle for second-order elliptic operators in unbounded domains},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {359--363},
     publisher = {Elsevier},
     volume = {334},
     number = {5},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02267-7},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/S1631-073X(02)02267-7/}
}
TY  - JOUR
AU  - Cafagna, Vittorio
AU  - Vitolo, Antonio
TI  - On the maximum principle for second-order elliptic operators in unbounded domains
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 359
EP  - 363
VL  - 334
IS  - 5
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/S1631-073X(02)02267-7/
DO  - 10.1016/S1631-073X(02)02267-7
LA  - en
ID  - CRMATH_2002__334_5_359_0
ER  - 
%0 Journal Article
%A Cafagna, Vittorio
%A Vitolo, Antonio
%T On the maximum principle for second-order elliptic operators in unbounded domains
%J Comptes Rendus. Mathématique
%D 2002
%P 359-363
%V 334
%N 5
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/S1631-073X(02)02267-7/
%R 10.1016/S1631-073X(02)02267-7
%G en
%F CRMATH_2002__334_5_359_0
Cafagna, Vittorio; Vitolo, Antonio. On the maximum principle for second-order elliptic operators in unbounded domains. Comptes Rendus. Mathématique, Tome 334 (2002) no. 5, pp. 359-363. doi : 10.1016/S1631-073X(02)02267-7. http://archive.numdam.org/articles/10.1016/S1631-073X(02)02267-7/

[1] Berestycki, H.; Caffarelli, L.A.; Nirenberg, L. Monotonicity for elliptic equations in unbounded Lipschitz domains, Comm. Pure Appl. Math., Volume 50 (1997), pp. 1089-1111

[2] Berestycki, H.; Nirenberg, L.; Varadhan, S.R.S. The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math., Volume 47 (1994), pp. 47-92

[3] Cabré, X. On the Alexandroff–Bakelman–Pucci estimate and the reverse Hölder inequality for solutions of elliptic and parabolic equations, Comm. Pure Appl. Math., Volume 48 (1995), pp. 539-570

[4] Gilbarg, D.; Trudinger, N.S. Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1983

[5] Hayman, W.K.; Kennedy, P.B., Subharmonic Functions, 1, Academic Press, 1976

Cité par Sources :