On montre que l'action d'un groupe dénombrable discret sur un espace localement compact invariant de fonctions harmoniques minimales est moyennable.
We prove that the action of a countable discrete group on a locally compact invariant space of minimal harmonic functions is ameanable.
Publié le :
@article{CRMATH_2002__334_5_355_0, author = {Biane, Philippe and Germain, Emmanuel}, title = {Actions moyennables et fonctions harmoniques}, journal = {Comptes Rendus. Math\'ematique}, pages = {355--358}, publisher = {Elsevier}, volume = {334}, number = {5}, year = {2002}, doi = {10.1016/S1631-073X(02)02276-8}, language = {fr}, url = {http://archive.numdam.org/articles/10.1016/S1631-073X(02)02276-8/} }
TY - JOUR AU - Biane, Philippe AU - Germain, Emmanuel TI - Actions moyennables et fonctions harmoniques JO - Comptes Rendus. Mathématique PY - 2002 SP - 355 EP - 358 VL - 334 IS - 5 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/S1631-073X(02)02276-8/ DO - 10.1016/S1631-073X(02)02276-8 LA - fr ID - CRMATH_2002__334_5_355_0 ER -
%0 Journal Article %A Biane, Philippe %A Germain, Emmanuel %T Actions moyennables et fonctions harmoniques %J Comptes Rendus. Mathématique %D 2002 %P 355-358 %V 334 %N 5 %I Elsevier %U http://archive.numdam.org/articles/10.1016/S1631-073X(02)02276-8/ %R 10.1016/S1631-073X(02)02276-8 %G fr %F CRMATH_2002__334_5_355_0
Biane, Philippe; Germain, Emmanuel. Actions moyennables et fonctions harmoniques. Comptes Rendus. Mathématique, Tome 334 (2002) no. 5, pp. 355-358. doi : 10.1016/S1631-073X(02)02276-8. http://archive.numdam.org/articles/10.1016/S1631-073X(02)02276-8/
[1] Groupoı̈des moyennables, Monograph. Enseign. Math., 36, Genève, 2000
[2] Positive harmonic functions and hyperbolicity, Potential Theory – Surveys and Problems, Prague, 1987, Lecture Notes in Math., 1344, Springer, 1988, pp. 1-23
[3] Classifying space for proper group actions an K-theory of group -algebras, Contemp. Math., Volume 167 (1994), pp. 241-291
[4] N.P. Brown, E. Germain, Dual entropy in discrete groups with amenable actions, Ergodic Theory Dynamical Systems (to appear)
[5] Lois « zéro ou deux » pour les processus de Markov. Applications aux marches aléatoires, Ann. Inst. H. Poincaré Sect. B (N.S.), Volume 12 (1976) no. 2, pp. 111-129
[6] Spaces and questions, GAFA 2000, Tel Aviv, 1999
[7] Compactifications of Symetric Spaces, Birkhäuser, 1998
[8] Denumerable Markov Chains, Graduate Texts in Math., 40, Springer-Verlag, New York, 1976 (With a chapter on Markov random fields, by David Griffeath)
[9] Remarks on Yu's property A, Bull. Soc. Math. France, Volume 129 (2001), pp. 115-139
[10] Exact -algebras and related topics, Seoul National University Global Analysis Research Center Lecture Notes, Volume 19 (1994)
[11] Random walks on infinite graphs and groups – a survey on selected topics, Bull. London Math. Soc., Volume 26 (1994) no. 1, pp. 1-60
[12] A description of the Martin boundary for nearest neighbour random walk on free products, Probability Measures on Groups, Oberwolfach, 1985, Lecture Notes in Math., 1210, Springer, Berlin, 1986, pp. 203-215
Cité par Sources :