A Schwarz-type formula for minimal surfaces in Euclidean space n
[Une formule de type Schwarz pour les surfaces minimales de l'espace euclidien n ]
Comptes Rendus. Mathématique, Tome 334 (2002) no. 5, pp. 389-394.

Cet article présente une représentation complexe des surfaces minimales de n , basée sur la formule de Schwarz qui résout le problème classique de Björling pour les surfaces minimales de 3 . Comme application, nous montrons qu'un plan de dimension k de n est un plan de symetrie d'une surface minimale de n s'il lui est orthogonal. Nous décrivons aussi un procédé de construction de surfaces minimales ayant des propriétés géométriques prédéterminées, à partir de courbes analytiques réelles.

This paper introduces a complex representation for minimal surfaces in n , based on the Schwarz formula which solves the classical Björling problem for minimal surfaces in 3 . As an application, it is shown that a k-dimensional plane of n is a plane of symmetry of a minimal surface in n provided it intersects the surface orthogonally. A procedure for the construction of minimal surfaces is also described. This procedure introduces minimal surfaces with prescribed geometric properties, starting from real analytic curves in n .

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02280-X
Alı́as, Luis J. 1 ; Mira, Pablo 2

1 Departamento de Matemáticas, Universidad de Murcia, 30100 Espinardo, Murcia, Spain
2 Departamento de Matemática Aplicada y Estadı́stica, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain
@article{CRMATH_2002__334_5_389_0,
     author = {Al{\i}́as, Luis J. and Mira, Pablo},
     title = {A {Schwarz-type} formula for minimal surfaces in {Euclidean} space $ \mathbb{R}^{n}$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {389--394},
     publisher = {Elsevier},
     volume = {334},
     number = {5},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02280-X},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/S1631-073X(02)02280-X/}
}
TY  - JOUR
AU  - Alı́as, Luis J.
AU  - Mira, Pablo
TI  - A Schwarz-type formula for minimal surfaces in Euclidean space $ \mathbb{R}^{n}$
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 389
EP  - 394
VL  - 334
IS  - 5
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/S1631-073X(02)02280-X/
DO  - 10.1016/S1631-073X(02)02280-X
LA  - en
ID  - CRMATH_2002__334_5_389_0
ER  - 
%0 Journal Article
%A Alı́as, Luis J.
%A Mira, Pablo
%T A Schwarz-type formula for minimal surfaces in Euclidean space $ \mathbb{R}^{n}$
%J Comptes Rendus. Mathématique
%D 2002
%P 389-394
%V 334
%N 5
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/S1631-073X(02)02280-X/
%R 10.1016/S1631-073X(02)02280-X
%G en
%F CRMATH_2002__334_5_389_0
Alı́as, Luis J.; Mira, Pablo. A Schwarz-type formula for minimal surfaces in Euclidean space $ \mathbb{R}^{n}$. Comptes Rendus. Mathématique, Tome 334 (2002) no. 5, pp. 389-394. doi : 10.1016/S1631-073X(02)02280-X. http://archive.numdam.org/articles/10.1016/S1631-073X(02)02280-X/

[1] L.J. Alı́as, P. Mira, The Björling problem for minimal surfaces in n and its applications (in preparation)

[2] S. Alves, R.M.B. Chaves, P. Simoes, Björling's problem for minimal surfaces in 4 (in preparation)

[3] Björling, E.G. In integrationem aequationis derivatarum partialum superfici, cujus in puncto unoquoque principales ambo radii curvedinis aequales sunt sngoque contrario, Arch. Math. Phys., Volume 4 (1844) no. 1, pp. 290-315

[4] Chern, S.S.; Osserman, R. Complete minimal surfaces in Euclidean n-space, J. Analyse Math., Volume 19 (1967), pp. 15-34

[5] Dierkes, U.; Hildebrant, S.; Küster, A.; Wohlrab, O. Minimal Surfaces I, Comprehensive Studies in Math., 295, Springer-Verlag, 1992

[6] Hoffman, D.; Osserman, R. The geometry of the generalized Gauss map, Mem. Amer. Math. Soc., Volume 28 (1980)

[7] Leung, D.S.P. The reflection principle for minimal submanifolds of Riemannian symmetric spaces, J. Differential Geom., Volume 8 (1973), pp. 153-160

[8] Nitsche, J.C.C., Lectures on Minimal Surfaces, I, Cambridge University Press, Cambridge, 1989

[9] Osserman, R. A Survey of Minimal Surfaces, Dover Publications, New York, 1986

[10] Osserman, R. Global properties of minimal surfaces in E3 and En, Ann. Math., Volume 80 (1964), pp. 340-364

[11] Schwarz, H.A. Gesammelte Mathematische Abhandlungen, Springer-Verlag, Berlin, 1890

Cité par Sources :