Least squares cross-validation for the kernel deconvolution density estimator
[Validation croisée pour l'estimateur à noyau de la déconvolution d'une densité]
Comptes Rendus. Mathématique, Tome 334 (2002) no. 6, pp. 509-513.

En présence d'un échantillon i.i.d. d'une variable aléatoire corrumpue Y=X+ε, avec X et ε indépendants. Nous proposons une méthode basée sur la validation-croisée, pour choisir la largeur de la fenêtre de l'estimateur à noyau de la densité de X. L'optimalité asymptotique de la méthode proposée est établie.

Assume we have i.i.d. replications from the corrupted random variable Y=X+ε, where X and ε are independent. We propose a data-driven bandwidth based on cross-validation ideas, for the kernel deconvolution estimator of the density of X. The proposed method is shown to be asymptotically optimal.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02291-4
Youndjé, Élie 1 ; Wells, Martin T. 2

1 UMR CNRS 6085, Université de Rouen, 76821 Mont Saint Aignan, France
2 Department of Social Statistics, Cornell University, 364 Ives Hall, Ithaca, NY 14851-0952, USA
@article{CRMATH_2002__334_6_509_0,
     author = {Youndj\'e, \'Elie and Wells, Martin T.},
     title = {Least squares cross-validation for the kernel deconvolution density estimator},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {509--513},
     publisher = {Elsevier},
     volume = {334},
     number = {6},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02291-4},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/S1631-073X(02)02291-4/}
}
TY  - JOUR
AU  - Youndjé, Élie
AU  - Wells, Martin T.
TI  - Least squares cross-validation for the kernel deconvolution density estimator
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 509
EP  - 513
VL  - 334
IS  - 6
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/S1631-073X(02)02291-4/
DO  - 10.1016/S1631-073X(02)02291-4
LA  - en
ID  - CRMATH_2002__334_6_509_0
ER  - 
%0 Journal Article
%A Youndjé, Élie
%A Wells, Martin T.
%T Least squares cross-validation for the kernel deconvolution density estimator
%J Comptes Rendus. Mathématique
%D 2002
%P 509-513
%V 334
%N 6
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/S1631-073X(02)02291-4/
%R 10.1016/S1631-073X(02)02291-4
%G en
%F CRMATH_2002__334_6_509_0
Youndjé, Élie; Wells, Martin T. Least squares cross-validation for the kernel deconvolution density estimator. Comptes Rendus. Mathématique, Tome 334 (2002) no. 6, pp. 509-513. doi : 10.1016/S1631-073X(02)02291-4. http://archive.numdam.org/articles/10.1016/S1631-073X(02)02291-4/

[1] Bowman, A.W. An alternative method of cross-validation for the smoothing of density estimates, Biometrika, Volume 72 (1984), pp. 353-360

[2] Fan, J. On the optimal rates of convergence for nonparametric deconvolution problems, Ann. Statist., Volume 19 (1991), pp. 1257-1272

[3] Fan, J. Asymptotic normality for deconvolution kernel density estimators, Sankhya Ser. A, Volume 53 (1991), pp. 97-110

[4] Hall, P. Large sample optimality of least squares cross-validation in density estimation, Ann. Statist., Volume 11 (1983), pp. 1156-1174

[5] Härdle, W.; Marron, J.S. Optimal bandwith selection in nonparametric regression estimation, Ann. Statist., Volume 13 (1985), pp. 1465-1481

[6] Hesse, C.H. Data-driven deconvolution, Nonparametric Statist., Volume 10 (1999), pp. 343-373

[7] Marron, J.S. A comparison of cross-validation techniques in density estimation, Ann. Statist., Volume 15 (1987), pp. 152-162

[8] Masry, E. Multivariate probability density deconvolution for stationary random processes, IEEE Trans. Inform. Theory, Volume IT-37 (1991), pp. 1105-1115

[9] Masry, E. Asymptotic normality for deconvolution estimators of multivariate densities of stationary processes, J. Multivariate Anal., Volume 44 (1993), pp. 47-68

[10] Masry, E. Strong consistency and rates for deconvolution of multivariate densities of stationary processes, Stochastic Process. Appl., Volume 47 (1993), pp. 53-74

[11] Rudemo, M. Empirical choice of histograms and kernel density estimators, Scand. J. Statist., Volume 9 (1982), pp. 65-78

[12] Stefanski, L.A.; Carroll, R.J. Deconvoluting kernel density estimators, Statistics, Volume 21 (1990), pp. 169-184

[13] E. Youndjé, M. Wells, Asymptotic equivalence of quadratic measure of errors for kernel deconvolution density, Technical report, Cornell Department of Statistical Sciences, 2000

Cité par Sources :