Nous proposons deux inégalités de concentration pour des fonctions de n variables indépen-dantes. L'une d'elles permet d'obtenir une inégalité de déviation de type Bennett pour les processus empiriques indexés par des classes de fonctions bornées à droite. Cela améliore la version donnée par Rio [6] de l'inégalité de Talagrand [7] pour des observations équi-distribuées.
We introduce new concentration inequalities for functions on product spaces. They allow to obtain a Bennett type deviation bound for suprema of empirical processes indexed by upper bounded functions. The result is an improvement on Rio's version [6] of Talagrand's inequality [7] for equidistributed variables.
Accepté le :
Publié le :
@article{CRMATH_2002__334_6_495_0, author = {Bousquet, Olivier}, title = {A {Bennett} concentration inequality and its application to suprema of empirical processes}, journal = {Comptes Rendus. Math\'ematique}, pages = {495--500}, publisher = {Elsevier}, volume = {334}, number = {6}, year = {2002}, doi = {10.1016/S1631-073X(02)02292-6}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/S1631-073X(02)02292-6/} }
TY - JOUR AU - Bousquet, Olivier TI - A Bennett concentration inequality and its application to suprema of empirical processes JO - Comptes Rendus. Mathématique PY - 2002 SP - 495 EP - 500 VL - 334 IS - 6 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/S1631-073X(02)02292-6/ DO - 10.1016/S1631-073X(02)02292-6 LA - en ID - CRMATH_2002__334_6_495_0 ER -
%0 Journal Article %A Bousquet, Olivier %T A Bennett concentration inequality and its application to suprema of empirical processes %J Comptes Rendus. Mathématique %D 2002 %P 495-500 %V 334 %N 6 %I Elsevier %U http://archive.numdam.org/articles/10.1016/S1631-073X(02)02292-6/ %R 10.1016/S1631-073X(02)02292-6 %G en %F CRMATH_2002__334_6_495_0
Bousquet, Olivier. A Bennett concentration inequality and its application to suprema of empirical processes. Comptes Rendus. Mathématique, Tome 334 (2002) no. 6, pp. 495-500. doi : 10.1016/S1631-073X(02)02292-6. http://archive.numdam.org/articles/10.1016/S1631-073X(02)02292-6/
[1] A sharp concentration inequality with applications, Random Structures Algorithms, Volume 16 (2000) no. 3, pp. 277-292
[2] S. Boucheron, G. Lugosi, P. Massart, Concentration of measure based on logarithmic Sobolev inequalities, 2001 (submitted)
[3] On Talagrand's deviation inequalities for product measures, Probab. Statist., Volume 1 (1996), pp. 63-87
[4] About the constants in Talagrand's inequality for empirical processes, Ann. Probab., Volume 29 (2000) no. 2, pp. 863-884
[5] Inégalités de concentration pour les processus empiriques de classes de parties, Probab. Theory Related Fields, Volume 119 (2000), pp. 163-175
[6] E. Rio, Une inegalité de Bennett pour les maxima de processus empiriques, Colloque en l'honneur de J. Bretagnolle, D. Dacunha-Castelle et I. Ibragimov, 2001 (to appear)
[7] New concentration inequalities in product spaces, Invent. Math., Volume 126 (1996), pp. 503-563
Cité par Sources :