A Bennett concentration inequality and its application to suprema of empirical processes
[Une inégalité de concentration de type Bennett et son application aux maxima de processus empiriques]
Comptes Rendus. Mathématique, Tome 334 (2002) no. 6, pp. 495-500.

Nous proposons deux inégalités de concentration pour des fonctions de n variables indépen-dantes. L'une d'elles permet d'obtenir une inégalité de déviation de type Bennett pour les processus empiriques indexés par des classes de fonctions bornées à droite. Cela améliore la version donnée par Rio [6] de l'inégalité de Talagrand [7] pour des observations équi-distribuées.

We introduce new concentration inequalities for functions on product spaces. They allow to obtain a Bennett type deviation bound for suprema of empirical processes indexed by upper bounded functions. The result is an improvement on Rio's version [6] of Talagrand's inequality [7] for equidistributed variables.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02292-6
Bousquet, Olivier 1

1 CMAP, École polytechnique, 91128 Palaiseau, France
@article{CRMATH_2002__334_6_495_0,
     author = {Bousquet, Olivier},
     title = {A {Bennett} concentration inequality and its application to suprema of empirical processes},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {495--500},
     publisher = {Elsevier},
     volume = {334},
     number = {6},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02292-6},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/S1631-073X(02)02292-6/}
}
TY  - JOUR
AU  - Bousquet, Olivier
TI  - A Bennett concentration inequality and its application to suprema of empirical processes
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 495
EP  - 500
VL  - 334
IS  - 6
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/S1631-073X(02)02292-6/
DO  - 10.1016/S1631-073X(02)02292-6
LA  - en
ID  - CRMATH_2002__334_6_495_0
ER  - 
%0 Journal Article
%A Bousquet, Olivier
%T A Bennett concentration inequality and its application to suprema of empirical processes
%J Comptes Rendus. Mathématique
%D 2002
%P 495-500
%V 334
%N 6
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/S1631-073X(02)02292-6/
%R 10.1016/S1631-073X(02)02292-6
%G en
%F CRMATH_2002__334_6_495_0
Bousquet, Olivier. A Bennett concentration inequality and its application to suprema of empirical processes. Comptes Rendus. Mathématique, Tome 334 (2002) no. 6, pp. 495-500. doi : 10.1016/S1631-073X(02)02292-6. http://archive.numdam.org/articles/10.1016/S1631-073X(02)02292-6/

[1] Boucheron, S.; Lugosi, G.; Massart, P. A sharp concentration inequality with applications, Random Structures Algorithms, Volume 16 (2000) no. 3, pp. 277-292

[2] S. Boucheron, G. Lugosi, P. Massart, Concentration of measure based on logarithmic Sobolev inequalities, 2001 (submitted)

[3] Ledoux, M. On Talagrand's deviation inequalities for product measures, Probab. Statist., Volume 1 (1996), pp. 63-87

[4] Massart, P. About the constants in Talagrand's inequality for empirical processes, Ann. Probab., Volume 29 (2000) no. 2, pp. 863-884

[5] Rio, E. Inégalités de concentration pour les processus empiriques de classes de parties, Probab. Theory Related Fields, Volume 119 (2000), pp. 163-175

[6] E. Rio, Une inegalité de Bennett pour les maxima de processus empiriques, Colloque en l'honneur de J. Bretagnolle, D. Dacunha-Castelle et I. Ibragimov, 2001 (to appear)

[7] Talagrand, M. New concentration inequalities in product spaces, Invent. Math., Volume 126 (1996), pp. 503-563

Cité par Sources :