Mathematical justification of a nonlinear integro-differential equation for the propagation of spherical flames
[Justification mathématique d'une équation intégro-différentielle non linéaire pour un modèle de flamme sphérique]
Comptes Rendus. Mathématique, Tome 334 (2002) no. 7, pp. 569-574.

Nous donnons dans cette Note les grandes lignes de la justification mathématiquement rigoureuse d'un modèle intégro-différentiel non linéaire d'évolution du rayon d'une flamme sphérique initialement proposé par G. Joulin dans [7]. Cette équation est obtenue dans le cadre du modèle thermo-diffusif tridimensionnel aux hautes énergies d'activation, avec nombre de Lewis strictement plus petit que 1. Nous montrons dans cette note la validité du modèle sous la restriction supplémentaire que le nombre de Lewis est assez proche de 1.

This Note is devoted to the justification of an asymptotic model for quasisteady three-dimensional spherical flames proposed by G. Joulin [7]. The paper [7] derives, by means of a three-scale matched asymptotic expansion, starting from the classical thermo-diffusive model with high activation energies, an integro-differential equation for the flame radius. In the derivation, it is essential for the Lewis number – i.e., the ratio between thermal and molecular diffusion – to be strictly less than unity. In this Note, we give the main ideas of a rigorous proof of the validity of this model, under the additional restriction that the Lewis number is close to 1.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02299-9
Lederman, Claudia 1 ; Roquejoffre, Jean-Michel 2 ; Wolanski, Noemi 1

1 Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
2 UFR-MIG, UMR CNRS 5640, Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse cedex, France
@article{CRMATH_2002__334_7_569_0,
     author = {Lederman, Claudia and Roquejoffre, Jean-Michel and Wolanski, Noemi},
     title = {Mathematical justification of a nonlinear integro-differential equation for the propagation of spherical flames},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {569--574},
     publisher = {Elsevier},
     volume = {334},
     number = {7},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02299-9},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/S1631-073X(02)02299-9/}
}
TY  - JOUR
AU  - Lederman, Claudia
AU  - Roquejoffre, Jean-Michel
AU  - Wolanski, Noemi
TI  - Mathematical justification of a nonlinear integro-differential equation for the propagation of spherical flames
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 569
EP  - 574
VL  - 334
IS  - 7
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/S1631-073X(02)02299-9/
DO  - 10.1016/S1631-073X(02)02299-9
LA  - en
ID  - CRMATH_2002__334_7_569_0
ER  - 
%0 Journal Article
%A Lederman, Claudia
%A Roquejoffre, Jean-Michel
%A Wolanski, Noemi
%T Mathematical justification of a nonlinear integro-differential equation for the propagation of spherical flames
%J Comptes Rendus. Mathématique
%D 2002
%P 569-574
%V 334
%N 7
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/S1631-073X(02)02299-9/
%R 10.1016/S1631-073X(02)02299-9
%G en
%F CRMATH_2002__334_7_569_0
Lederman, Claudia; Roquejoffre, Jean-Michel; Wolanski, Noemi. Mathematical justification of a nonlinear integro-differential equation for the propagation of spherical flames. Comptes Rendus. Mathématique, Tome 334 (2002) no. 7, pp. 569-574. doi : 10.1016/S1631-073X(02)02299-9. http://archive.numdam.org/articles/10.1016/S1631-073X(02)02299-9/

[1] Audounet, J.; Giovangigli, V.; Roquejoffre, J.-M. A threshold phenomenon in the propagation of a point source initiated flame, Phys. D, Volume 121 (1998), pp. 295-316

[2] Berestycki, H.; Larrouturou, B. Quelques aspects mathématiques de la propagation des flammes prémélangées (Brezis, H.; Lions, eds.), Collège de France Seminar, 10, Pitman–Longman, Harlow, UK, 1991

[3] Buckmaster, J.D.; Joulin, G.; Ronney, P. The effects of radiation on flame balls at zero gravity, Combustion and Flame, Volume 79 (1990), pp. 381-392

[4] Buckmaster, J.D.; Ludford, G.S.S. Theory of Laminar Flames, Cambridge University Press, Cambridge, 1982

[5] Fernandez Bonder, J.; Wolanski, N. A free-boundary problem in combustion theory, Interfaces Free Bound, Volume 2 (2000), pp. 381-411

[6] Glangetas, L.; Roquejoffre, J.-M. Bifurcations of travelling waves in the thermo-diffusive model for flame propagation, Arch. Rational Mech. Anal., Volume 134 (1996), pp. 341-402

[7] Joulin, G. Point-source initiation of lean spherical flames of light reactants: an asymptotic theory, Comb. Sci. and Tech., Volume 43 (1985), pp. 99-113

[8] Joulin, G. Preferential diffusion and the initiation of lean flames of light fuels, SIAM J. Appl. Math., Volume 47 (1987), pp. 998-1016

Cité par Sources :