Les caractéristiques topologiques d'un domaine de sont analysées ici à l'aide des groupes d'homologie du premier et second ordre. La topologie algébrique et une factorization particulière de type dans peuvent être utilisées afin de savoir si est connexe et simplement connexe, de même que pour vérifier si une discrétisation de par éléments simpliciaux a été bien réalisée.
The topological features of a given domain in are here analyzed by means of the homology groups of first and second order. Algebraic topology together with a particular type factorization in can be used to know whether is connected and simply connected, as well as to check if a given discretization of by means of simplices has been correctly realized.
Publié le :
@article{CRMATH_2002__334_8_717_0, author = {Rapetti, Francesca and Dubois, Fran\c{c}ois and Bossavit, Alain}, title = {Integer matrix factorization for mesh defect detection}, journal = {Comptes Rendus. Math\'ematique}, pages = {717--720}, publisher = {Elsevier}, volume = {334}, number = {8}, year = {2002}, doi = {10.1016/S1631-073X(02)02318-X}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/S1631-073X(02)02318-X/} }
TY - JOUR AU - Rapetti, Francesca AU - Dubois, François AU - Bossavit, Alain TI - Integer matrix factorization for mesh defect detection JO - Comptes Rendus. Mathématique PY - 2002 SP - 717 EP - 720 VL - 334 IS - 8 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/S1631-073X(02)02318-X/ DO - 10.1016/S1631-073X(02)02318-X LA - en ID - CRMATH_2002__334_8_717_0 ER -
%0 Journal Article %A Rapetti, Francesca %A Dubois, François %A Bossavit, Alain %T Integer matrix factorization for mesh defect detection %J Comptes Rendus. Mathématique %D 2002 %P 717-720 %V 334 %N 8 %I Elsevier %U http://archive.numdam.org/articles/10.1016/S1631-073X(02)02318-X/ %R 10.1016/S1631-073X(02)02318-X %G en %F CRMATH_2002__334_8_717_0
Rapetti, Francesca; Dubois, François; Bossavit, Alain. Integer matrix factorization for mesh defect detection. Comptes Rendus. Mathématique, Tome 334 (2002) no. 8, pp. 717-720. doi : 10.1016/S1631-073X(02)02318-X. http://archive.numdam.org/articles/10.1016/S1631-073X(02)02318-X/
[1] Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements, Academic Press, New York, 1998
[2] Rank revealing QR factorizations, Linear Algebra Appl., Volume 88/89 (1987), pp. 67-82
[3] Du tourbillon au champ de vitesse, Workshop at the Conservatoire des Arts et Métiers de Paris, on the subject “Modèles fluides et représentation en toubillons”, 1, 2000, pp. 127-153 see also in MATAPLI 65 (2001) 87–88
[4] Graphs, Surfaces and Homology. An Introduction to Algebraic Topology, Chapman and Hall Math. Ser., 1977
[5] R. Hiptmair, J. Ostrowski, Generators of H1(Γh,Z) for triangulated surfaces: Construction and classification, Sonderforschungsbereich 382, Universität Tübingen, Report 160, 2001
[6] Discrete spaces for divergence- and curl-free fields, IEEE Trans. Magn., Volume 34 (1998) no. 5, pp. 2851-2854
[7] Classical Topology and Combinatorial Group Theory, Graduate Texts in Math., 72, Springer-Verlag, 1993
Cité par Sources :