Santaló's inequality on n by complex interpolation
[Inégalité de Santaló sur n par interpolation complexe]
Comptes Rendus. Mathématique, Tome 334 (2002) no. 9, pp. 767-772.

On donne une nouvelle approche de l'inégalité de Santaló en combinant l'interpolation complexe et la généralisation de l'inégalité de Prékopa obtenue par Berntdsson.

A new approach to Santaló's inequality on n is obtained by combining complex interpolation and Berndtsson's generalization of Prékopa's inequality.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02328-2
Cordero-Erausquin, Dario 1

1 Laboratoire d'analyse et de mathématiques appliquées (CNRS UMR 8050), Université de Marne la Vallée, 77454 Marne la Vallée cedex 2, France
@article{CRMATH_2002__334_9_767_0,
     author = {Cordero-Erausquin, Dario},
     title = {Santal\'o's inequality on $ \mathbb{C}^{n}$ by complex interpolation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {767--772},
     publisher = {Elsevier},
     volume = {334},
     number = {9},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02328-2},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/S1631-073X(02)02328-2/}
}
TY  - JOUR
AU  - Cordero-Erausquin, Dario
TI  - Santaló's inequality on $ \mathbb{C}^{n}$ by complex interpolation
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 767
EP  - 772
VL  - 334
IS  - 9
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/S1631-073X(02)02328-2/
DO  - 10.1016/S1631-073X(02)02328-2
LA  - en
ID  - CRMATH_2002__334_9_767_0
ER  - 
%0 Journal Article
%A Cordero-Erausquin, Dario
%T Santaló's inequality on $ \mathbb{C}^{n}$ by complex interpolation
%J Comptes Rendus. Mathématique
%D 2002
%P 767-772
%V 334
%N 9
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/S1631-073X(02)02328-2/
%R 10.1016/S1631-073X(02)02328-2
%G en
%F CRMATH_2002__334_9_767_0
Cordero-Erausquin, Dario. Santaló's inequality on $ \mathbb{C}^{n}$ by complex interpolation. Comptes Rendus. Mathématique, Tome 334 (2002) no. 9, pp. 767-772. doi : 10.1016/S1631-073X(02)02328-2. http://archive.numdam.org/articles/10.1016/S1631-073X(02)02328-2/

[1] Bergh, J.; Löftröm, J. Interpolation Spaces. An Introduction, Springer, Berlin, 1976

[2] Berndtsson, B. Prekopa's theorem and Kiselman's minimum principle for plurisubharmonic functions, Math. Ann., Volume 312 (1998), pp. 785-792

[3] Hörmander, L. An Introduction to Complex Analysis in Several Variables, North-Holland, Amsterdam, 1990

[4] Meyer, M.; Pajor, A. On the Blaschke–Santaló inequality, Arch. Math. (Basel), Volume 55 (1990), pp. 82-93

[5] Prékopa, A. On logarithmic concave measures and functions, Acta Sci. Math. (Szeged), Volume 34 (1973), pp. 335-343

[6] Santaló, L. Un invariante afin para los cuerpos convexos del espacio de n dimensiones, Portugal Math., Volume 8 (1949), pp. 155-1961

Cité par Sources :