On donne dans cette Note une généralisation d'un théorème de Hardy pour la transformation de Dunkl sur . Plus précisément, pour toutes les valeurs de a>0, b>0 et p,q∈[1,+∞], on détermine les fonctions mesurables f telles que et , où les sont les espaces Lp associés à la transformation de Dunkl.
In this Note we give a generalization of Hardy's theorem for the Dunkl transform on . More precisely, for all a>0, b>0 and p,q∈[1,+∞], we determine the measurable functions f such that and , where are the Lp spaces associated with the Dunkl transform.
Accepté le :
@article{CRMATH_2002__334_10_849_0, author = {Gallardo, L\'eonard and Trim\`eche, Khalifa}, title = {Un analogue d'un th\'eor\`eme de {Hardy} pour la transformation de {Dunkl}}, journal = {Comptes Rendus. Math\'ematique}, pages = {849--854}, publisher = {Elsevier}, volume = {334}, number = {10}, year = {2002}, doi = {10.1016/S1631-073X(02)02361-0}, language = {fr}, url = {http://archive.numdam.org/articles/10.1016/S1631-073X(02)02361-0/} }
TY - JOUR AU - Gallardo, Léonard AU - Trimèche, Khalifa TI - Un analogue d'un théorème de Hardy pour la transformation de Dunkl JO - Comptes Rendus. Mathématique PY - 2002 SP - 849 EP - 854 VL - 334 IS - 10 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/S1631-073X(02)02361-0/ DO - 10.1016/S1631-073X(02)02361-0 LA - fr ID - CRMATH_2002__334_10_849_0 ER -
%0 Journal Article %A Gallardo, Léonard %A Trimèche, Khalifa %T Un analogue d'un théorème de Hardy pour la transformation de Dunkl %J Comptes Rendus. Mathématique %D 2002 %P 849-854 %V 334 %N 10 %I Elsevier %U http://archive.numdam.org/articles/10.1016/S1631-073X(02)02361-0/ %R 10.1016/S1631-073X(02)02361-0 %G fr %F CRMATH_2002__334_10_849_0
Gallardo, Léonard; Trimèche, Khalifa. Un analogue d'un théorème de Hardy pour la transformation de Dunkl. Comptes Rendus. Mathématique, Tome 334 (2002) no. 10, pp. 849-854. doi : 10.1016/S1631-073X(02)02361-0. http://archive.numdam.org/articles/10.1016/S1631-073X(02)02361-0/
[1] Uncertainty principles like Hardy's theorem on some Lie groups, J. Austral. Math. Soc. Ser. A, Volume 65 (1999), pp. 239-302
[2] Éléments de mathématiques, Fascicule XXI. Intégration des mesures, Chapitre 5, Hermann, Paris, 1967
[3] Generalizations of Heisenberg inequality, Lecture Notes in Math., 992, Springer, Berlin, 1983, pp. 443-449
[4] The Dunkl transform, Invent. Math., Volume 113 (1993), pp. 147-162
[5] Hankel transforms associated to finite reflection groups, Contemp. Math., Volume 138 (1992), pp. 123-138
[6] An Lp version of the Hardy theorem for the motion group, J. Austral. Math. Soc. Ser. A, Volume 68 (2000), pp. 55-67
[7] A theorem concerning Fourier transform, J. London Math. Soc., Volume 8 (1933), pp. 227-231
[8] An elementary approach to the hypergeometric shift operators of Opdam, Invent. Math., Volume 103 (1991), pp. 341-350
[9] Dunkl operators formalism for quantum many-body problems associated with classical root systems, J. Phys. Soc. Japan, Volume 65 (1996), pp. 394-401
[10] Exact operator solution of the Calogero–Sutherland model, Comm. Math. Phys., Volume 178 (1996), pp. 425-452
[11] Generalized Hermite polynomials and the heat equation for Dunkl operators, Comm. Math. Phys., Volume 192 (1998), pp. 519-542
[12] Uncertainty principles on certain Lie groups, Proc. Indian Acad. Sci. Math. Sci., Volume 105 (1995), pp. 135-151
[13] The Theory of Functions, Oxford University Press, 1939
[14] K. Trimèche, The Dunkl intertwining operator on spaces of functions and distributions and integral representation of its dual, Integral transforms and special functions, a paraı̂tre
Cité par Sources :