Théorèmes ergodiques maximaux dans les espaces L 𝐩 non commutatifs
Comptes Rendus. Mathématique, Tome 334 (2002) no. 9, pp. 773-778.

On obtient certains théorèmes ergodiques maximaux dans les espaces Lp non commutatifs associés à une algèbre de von Neumann semifinie.

We prove several maximal ergodic theorems in non-commutative Lp-spaces associated with semifinite von Neumann algebras.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02367-1
Junge, Marius 1 ; Xu, Quanhua 2

1 Department of Mathematics, University of Illinois, Urbana, IL 61801, USA
2 Laboratoire de mathématiques, Université de Franche-Comté, 25030 Besançon cedex, France
@article{CRMATH_2002__334_9_773_0,
     author = {Junge, Marius and Xu, Quanhua},
     title = {Th\'eor\`emes ergodiques maximaux dans les espaces $ \mathrm{L}_{\mathbf{p}}$ non commutatifs},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {773--778},
     publisher = {Elsevier},
     volume = {334},
     number = {9},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02367-1},
     language = {fr},
     url = {http://archive.numdam.org/articles/10.1016/S1631-073X(02)02367-1/}
}
TY  - JOUR
AU  - Junge, Marius
AU  - Xu, Quanhua
TI  - Théorèmes ergodiques maximaux dans les espaces $ \mathrm{L}_{\mathbf{p}}$ non commutatifs
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 773
EP  - 778
VL  - 334
IS  - 9
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/S1631-073X(02)02367-1/
DO  - 10.1016/S1631-073X(02)02367-1
LA  - fr
ID  - CRMATH_2002__334_9_773_0
ER  - 
%0 Journal Article
%A Junge, Marius
%A Xu, Quanhua
%T Théorèmes ergodiques maximaux dans les espaces $ \mathrm{L}_{\mathbf{p}}$ non commutatifs
%J Comptes Rendus. Mathématique
%D 2002
%P 773-778
%V 334
%N 9
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/S1631-073X(02)02367-1/
%R 10.1016/S1631-073X(02)02367-1
%G fr
%F CRMATH_2002__334_9_773_0
Junge, Marius; Xu, Quanhua. Théorèmes ergodiques maximaux dans les espaces $ \mathrm{L}_{\mathbf{p}}$ non commutatifs. Comptes Rendus. Mathématique, Tome 334 (2002) no. 9, pp. 773-778. doi : 10.1016/S1631-073X(02)02367-1. http://archive.numdam.org/articles/10.1016/S1631-073X(02)02367-1/

[1] Bożejko, M. Ultracontractivity and strong Sobolev inequality for q-Ornstein–Uhlenbeck semigroup (−1<q<1), Infinite Dimensional Anal., Quantum Probab. Related Topics, Volume 2 (1999), pp. 203-220

[2] Bożejko, M.; Kümmerer, B.; Speicher, R. q-Gaussian processes: Non-commutative and classical aspects, Comm. Math. Phys., Volume 185 (1997), pp. 129-154

[3] Conze, J.P.; Dang-Ngoc, N. Ergodic theorems for noncommutative dynamical systems, Invent. Math., Volume 46 (1978), pp. 1-15

[4] Cuculescu, I. Martingales on von Neumann algebras, J. Multivariate. Anal., Volume 1 (1971), pp. 17-27

[5] Jajte, R. Strong Limit Theorems on Non-Commutative Probability, Lecture Notes in Math., 1110, Springer, 1985

[6] M. Junge, Doob's inequality for non-commutative martingales, J. Reine Angew. Math., to appear

[7] M. Junge, Q. Xu, The optimal orders of growth of the best constants in some non-commutative martingale inequalities, en préparation

[8] Kümmerer, B. A non-commutative individual ergodic theorem, Invent. Math., Volume 46 (1978), pp. 139-145

[9] Lance, E.C. Ergodic theorems for convex sets and operator algebras, Invent. Math., Volume 37 (1976), pp. 201-214

[10] Pisier, G. Non-commutative vector valued Lp-spaces and completely p-summing maps, Astérisque, Volume 247 (1998)

[11] Stein, E.M. On the maximal ergodic theorem, Proc. Nat. Acad. Sci., Volume 47 (1961), pp. 1894-1897

[12] Stein, E.M. Topics in harmonic analysis related to the Littlewood–Paley theory, Ann. Math. Studies, Princeton University Press, 1985

[13] Yeadon, F.J. Ergodic theorems for semifinite von Neumann algebras. I, J. London Math. Soc., Volume 16 (1977), pp. 326-332

Cité par Sources :