Global Carleman estimates for weak solutions of elliptic nonhomogeneous Dirichlet problems
[Estimations de Carleman globales pour des solutions faibles de problèmes elliptiques avec condition de Dirichlet non homogène]
Comptes Rendus. Mathématique, Tome 335 (2002) no. 1, pp. 33-38.

On considère une équation elliptique du second ordre générale avec second membre f+ j=0 N f j x j H -1 (Ω), f,f j L 2 (Ω) et condition de Dirichlet g∈H1/2(Γ). On montre une estimation de Carleman globale pour la solution y de cette équation en termes de normes L2 à poids de f et fj et de la norme H1/2 de g. Cette estimation dépend de deux paramètres réels s et λ qui sont supposés assez grands et est optimale en ce qui concerne les exposants de ces paramètres. Ceci nous permet d'obtenir, par exemple, des estimations fines sur la pression dans les équations de Navier–Stokes linéarisées et se révèle fort utile dans l'étude des problèmes de contrôlabilité.

We consider a general second order elliptic equation with right-hand side f+ j=0 N f j x j H -1 (Ω) where f,f j L 2 (Ω) and Dirichlet boundary condition g∈H1/2(Γ). We prove a global Carleman estimate for the solution y of this equation in terms of the weighted L2 norms of f and fj and the H1/2 norm of g. This estimate depends on two real parameters s and λ which are supposed to be large enough and is sharp with respect to the exponents of these parameters. This allows us to obtain, for example, sharper estimates on the pressure term in the linearized Navier–Stokes equations and it turns out to be very useful in the context of controllability problems.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02389-0
Imanuvilov, Oleg Yu. 1 ; Puel, Jean-Pierre 2

1 Department of Mathematics, Iowa State University, 400 Carver Hall, Ames, IA 50011-2064, USA
2 Laboratoire de mathématiques appliquées, Université de Versailles St Quentin, 45, avenue des États Unis, 78035 Versailles cedex, France
@article{CRMATH_2002__335_1_33_0,
     author = {Imanuvilov, Oleg Yu. and Puel, Jean-Pierre},
     title = {Global {Carleman} estimates for weak solutions of elliptic nonhomogeneous {Dirichlet} problems},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {33--38},
     publisher = {Elsevier},
     volume = {335},
     number = {1},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02389-0},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/S1631-073X(02)02389-0/}
}
TY  - JOUR
AU  - Imanuvilov, Oleg Yu.
AU  - Puel, Jean-Pierre
TI  - Global Carleman estimates for weak solutions of elliptic nonhomogeneous Dirichlet problems
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 33
EP  - 38
VL  - 335
IS  - 1
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/S1631-073X(02)02389-0/
DO  - 10.1016/S1631-073X(02)02389-0
LA  - en
ID  - CRMATH_2002__335_1_33_0
ER  - 
%0 Journal Article
%A Imanuvilov, Oleg Yu.
%A Puel, Jean-Pierre
%T Global Carleman estimates for weak solutions of elliptic nonhomogeneous Dirichlet problems
%J Comptes Rendus. Mathématique
%D 2002
%P 33-38
%V 335
%N 1
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/S1631-073X(02)02389-0/
%R 10.1016/S1631-073X(02)02389-0
%G en
%F CRMATH_2002__335_1_33_0
Imanuvilov, Oleg Yu.; Puel, Jean-Pierre. Global Carleman estimates for weak solutions of elliptic nonhomogeneous Dirichlet problems. Comptes Rendus. Mathématique, Tome 335 (2002) no. 1, pp. 33-38. doi : 10.1016/S1631-073X(02)02389-0. http://archive.numdam.org/articles/10.1016/S1631-073X(02)02389-0/

[1] Fabre, C.; Lebeau, G. Prolongement unique des solutions de l'équation de Stokes, Comm. Partial Differential Equations, Volume 21 (1996), pp. 573-596

[2] Fursikov, A.; Imanuvilov, O. Controllability of Evolution Equations, Lecture Notes Series, 34, Seoul National University, 1996

[3] Hörmander, L. Linear Partial Differential Operators, Academic Press–Springer-Verlag, New York, Berlin, 1963

[4] Imanuvilov, O. On exact controllability for the Navier–Stokes equations, ESAIM: Control Optim. Calc. Var., Volume 3 (1998), pp. 97-131 www.emath.fr/cocv/

[5] Imanuvilov, O. Remarks on exact controllability for Navier–Stokes equations, ESAIM: Control Optim. Calc. Var., Volume 6 (2001), pp. 39-72 www.emath.fr/cocv/

[6] O. Imanuvilov, J.-P. Puel, Global Carleman estimates for weak elliptic nonhomogeneous Dirichlet problem, to appear

[7] O. Imanuvilov, M. Yamamoto, Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations, UTMS 98-46

[8] Lions, J.-L. Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, Berlin, 1971

[9] Taylor, M. Pseudodifferential Operators and Nonlinear PDE, Birkhäuser, Berlin, 1991

Cité par Sources :