Nous donnons une preuve algébrique dans le cas des germes bidimensionnels de l'invariance analytique d'un semi-groupe associé par González Pérez à tout germe quasi-ordinaire irréductible d'hypersurface complexe. Nous en déduisons une nouvelle preuve de l'invariance analytique des exposants caractéristiques normalisés. De plus, nous associons des valeurs dans le semi-groupe aux éléments d'un sous-ensemble de l'algèbre locale de .
We give an algebraic proof for 2-dimensional germs of the analytic invariance of a semigroup associated by González Pérez to any irreducible germ of complex quasi-ordinary hypersurface. We deduce from it a new proof of the analytic invariance of the normalized characteristic exponents. Moreover, we associate values in the semigroup to the elements of a subset of the local algebra of .
Accepté le :
Publié le :
@article{CRMATH_2002__334_12_1101_0, author = {Popescu-Pampu, Patrick}, title = {On the invariance of the semigroup of a quasi-ordinary surface singularity}, journal = {Comptes Rendus. Math\'ematique}, pages = {1101--1106}, publisher = {Elsevier}, volume = {334}, number = {12}, year = {2002}, doi = {10.1016/S1631-073X(02)02404-4}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/S1631-073X(02)02404-4/} }
TY - JOUR AU - Popescu-Pampu, Patrick TI - On the invariance of the semigroup of a quasi-ordinary surface singularity JO - Comptes Rendus. Mathématique PY - 2002 SP - 1101 EP - 1106 VL - 334 IS - 12 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/S1631-073X(02)02404-4/ DO - 10.1016/S1631-073X(02)02404-4 LA - en ID - CRMATH_2002__334_12_1101_0 ER -
%0 Journal Article %A Popescu-Pampu, Patrick %T On the invariance of the semigroup of a quasi-ordinary surface singularity %J Comptes Rendus. Mathématique %D 2002 %P 1101-1106 %V 334 %N 12 %I Elsevier %U http://archive.numdam.org/articles/10.1016/S1631-073X(02)02404-4/ %R 10.1016/S1631-073X(02)02404-4 %G en %F CRMATH_2002__334_12_1101_0
Popescu-Pampu, Patrick. On the invariance of the semigroup of a quasi-ordinary surface singularity. Comptes Rendus. Mathématique, Tome 334 (2002) no. 12, pp. 1101-1106. doi : 10.1016/S1631-073X(02)02404-4. http://archive.numdam.org/articles/10.1016/S1631-073X(02)02404-4/
[1] On the ramification of algebraic functions, Amer. J. Math., Volume 77 (1955), pp. 575-592
[2] Expansion Techniques in Algebraic Geometry, Tata Institute of Fundamental Research, Bombay, 1977
[3] Compact Complex Surfaces, Springer-Verlag, 1984
[4] Embedded topological classification of quasi-ordinary singularities, Mem. Amer. Math. Soc., Volume 388 (1988)
[5] P. González Pérez, Quasi-ordinary singularities via toric geometry, Thesis, University of La Laguna, Tenerife, Spain, September 2000
[6] P. González Pérez, The semigroup of a quasi-ordinary hypersurface, submitted
[7] Normal Two-Dimensional Singularities, Princeton University Press, 1971
[8] J. Lipman, Quasi-ordinary singularities of embedded surfaces, Thesis, Harvard University, 1965
[9] Quasi-ordinary singularities of surfaces in , Proc. Sympos. Pure Math., 40, 1983 (Part 2, pp. 161–172)
[10] Topological invariants of quasi-ordinary singularities, Mem. Amer. Math. Soc., Volume 388 (1988)
[11] I. Luengo Velasco, Sobre la estructura de las singularidades de las superficies algebroides sumergidas, Thesis, Univ. Complutense, Madrid, September 1979
[12] On the structure of embedded algebroid surfaces, Proc. Sympos. Pure Math., 40, 1983 (Part 2, pp. 185–192)
[13] P. Popescu-Pampu, Approximate Roots, Proceedings of the International Conference and Workshop on Valuation Theory Saskatoon, Canada, 1999, to appear
[14] P. Popescu-Pampu, Arbres de contact des singularités quasi-ordinaires et graphes d'adjacence pour les 3-variétés réelles, Thesis, University Paris 7, November 2001
[15] Le problème des modules pour les branches planes, Hermann, 1986
Cité par Sources :