Periodic unfolding and homogenization
[Éclatement périodique et homogénéisation]
Comptes Rendus. Mathématique, Tome 335 (2002) no. 1, pp. 99-104.

Cette Note présente une approche originale des problèmes d'homogénéisation périodique. Basée sur une méthode d'éclatement périodique, elle conduit à un problème limite à coefficients non oscillants sur un domaine fixe. En comparaison avec les méthodes classiques, cette approche passe par des démonstrations relativement élementaires, et son champs d'application inclut le cas périodique multi-échelle ainsi que le cas des domaines perforés et des structures réticulées.

A novel approach to periodic homogenization is proposed, based on an unfolding method, which leads to a fixed domain problem (without singularly oscillating coefficients). This method is elementary in nature and applies to cases of periodic multi-scale problems in domains with or without holes (including truss-like structures).

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02429-9
Cioranescu, Doina 1 ; Damlamian, Alain 2 ; Griso, Georges 1

1 Université Pierre et Marie Curie (Paris VI), Laboratoire d'analyse numérique, 4, place Jussieu, 75252 Paris cedex 05, France
2 Université Paris XII Val de Marne, Laboratoire d'analyse et de mathématiques appliquées, CNRS UMR 8050, 94010 Créteil cedex, France
@article{CRMATH_2002__335_1_99_0,
     author = {Cioranescu, Doina and Damlamian, Alain and Griso, Georges},
     title = {Periodic unfolding and homogenization},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {99--104},
     publisher = {Elsevier},
     volume = {335},
     number = {1},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02429-9},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/S1631-073X(02)02429-9/}
}
TY  - JOUR
AU  - Cioranescu, Doina
AU  - Damlamian, Alain
AU  - Griso, Georges
TI  - Periodic unfolding and homogenization
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 99
EP  - 104
VL  - 335
IS  - 1
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/S1631-073X(02)02429-9/
DO  - 10.1016/S1631-073X(02)02429-9
LA  - en
ID  - CRMATH_2002__335_1_99_0
ER  - 
%0 Journal Article
%A Cioranescu, Doina
%A Damlamian, Alain
%A Griso, Georges
%T Periodic unfolding and homogenization
%J Comptes Rendus. Mathématique
%D 2002
%P 99-104
%V 335
%N 1
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/S1631-073X(02)02429-9/
%R 10.1016/S1631-073X(02)02429-9
%G en
%F CRMATH_2002__335_1_99_0
Cioranescu, Doina; Damlamian, Alain; Griso, Georges. Periodic unfolding and homogenization. Comptes Rendus. Mathématique, Tome 335 (2002) no. 1, pp. 99-104. doi : 10.1016/S1631-073X(02)02429-9. http://archive.numdam.org/articles/10.1016/S1631-073X(02)02429-9/

[1] Allaire, G. Homogenization and two-scale convergence, SIAM J. Math. Anal., Volume 23 (1992), pp. 1482-1518

[2] Allaire, G.; Briane, M. Multiscale convergence and reiterated homogenization, Proc. Roy. Soc. Edinburgh Sect. A, Volume 126 (1996), pp. 297-342

[3] Arbogast, T.; Douglas, J.; Hornung, U. Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. Math. Anal., Volume 21 (1990), pp. 823-836

[4] Casado-Díaz, J. Two-scale convergence for nonlinear Dirichlet problems in perforated domains, Proc. Roy. Soc. Edinburgh, Sect. A, Volume 130 (2000), pp. 249-276

[5] Casado-Díaz, J.; Luna-Laynez, M.; Martı́n, J.D. An adaptation of the multi-scale methods for the analysis of bery thin reticulated structures, C. R. Acad. Sci. Paris, Série I, Volume 332 (2001), pp. 223-228

[6] J. Casado-Dı́az, M. Luna-Laynez, J.D. Martı́n, Homogenization of nonhomogeneous monotone operators in thin reticulated structures: a multi-scale method, to appear

[7] Cioranescu, D.; Donato, P. An Introduction to Homogenization, Oxford Lecture Series in Math. Appl., 17, Oxford University Press, 1999

[8] A. Ene, J. Saint Jean Paulin, On a model of fractured porous media, Publication Dép. Math. Université de Metz 2 (1996)

[9] Defranceschi, A.; Dal Maso, G. Correctors for the homogenization of monotone operators, Differential Integral Equations, Volume 3 (1990) no. 6, pp. 1151-1166

[10] G. Griso, Analyse asymptotique de structures réticulées. Thèse Université Pierre et Marie Curie (Paris VI), 1996

[11] Griso, G. Thin reticulated structures (Chipot, M.; Saint Jean Paulin, J.; Shafrir, I., eds.), Progress in Partial Differential Equations, The Metz Surveys, 3, Pitman, London, 1994, pp. 161-182

[12] Nguetseng, G. A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., Volume 20 (1989), pp. 608-629

Cité par Sources :