On the nondegeneracy of the critical points of the Robin function in symmetric domains
[Sur le non-dégénérescence des points critiques de la fonction de Robin dans les domaines symétriques]
Comptes Rendus. Mathématique, Tome 335 (2002) no. 2, pp. 157-160.

Soit Ω un domain borné et régulier de N , N⩾2, qui est symétrique par rapport à l'origine. Dans cette Note, nous montrons que, sous certaines hypothèses sur Ω (par exemple convexité dans les directions x1,…,xN), la matrice hessienne calculée à zero est diagonale et strictement négative.

Let Ω be a smooth bounded domain of N , N⩾2, which is symmetric with respect to the origin. In this Note we prove that, under some geometrical condition on Ω (for example convexity in the directions x1,…,xN), the Hessian matrix of the Robin function computed at zero is diagonal and strictly negative definite.

Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02448-2
Grossi, Massimo 1

1 Dipartimento di Matematica, Università di Roma “La Sapienza” P.le Aldo Moro, 2, 00185 Roma, Italy
@article{CRMATH_2002__335_2_157_0,
     author = {Grossi, Massimo},
     title = {On the nondegeneracy of the critical points of the {Robin} function in symmetric domains},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {157--160},
     publisher = {Elsevier},
     volume = {335},
     number = {2},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02448-2},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/S1631-073X(02)02448-2/}
}
TY  - JOUR
AU  - Grossi, Massimo
TI  - On the nondegeneracy of the critical points of the Robin function in symmetric domains
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 157
EP  - 160
VL  - 335
IS  - 2
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/S1631-073X(02)02448-2/
DO  - 10.1016/S1631-073X(02)02448-2
LA  - en
ID  - CRMATH_2002__335_2_157_0
ER  - 
%0 Journal Article
%A Grossi, Massimo
%T On the nondegeneracy of the critical points of the Robin function in symmetric domains
%J Comptes Rendus. Mathématique
%D 2002
%P 157-160
%V 335
%N 2
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/S1631-073X(02)02448-2/
%R 10.1016/S1631-073X(02)02448-2
%G en
%F CRMATH_2002__335_2_157_0
Grossi, Massimo. On the nondegeneracy of the critical points of the Robin function in symmetric domains. Comptes Rendus. Mathématique, Tome 335 (2002) no. 2, pp. 157-160. doi : 10.1016/S1631-073X(02)02448-2. http://archive.numdam.org/articles/10.1016/S1631-073X(02)02448-2/

[1] Bahri, A.; Li, Y.Y.; Rey, O. On a variational problemwith lack of compactness: the topological effect of the critical points at infinity, Calc. Var., Volume 3 (1995), pp. 67-93

[2] Bandle, C.; Flucher, M. Harmonic radius and concentration of energy; hyperbolic radius and Liouville's equations, SIAM Rev., Volume 38 (1996), pp. 239-255

[3] Brezis, H.; Peletier, L. Asymptotics for elliptic equations involving the critical growth, Partial Differential Equations and Calculus of Variations, Progr. Nonlinear Differential Equations Appl., 1, Birkäuser, Boston, 1989, pp. 149-192

[4] Gilbarg, D.; Trudinger, N. Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1983

[5] Glangetas, L. Uniqueness of positive solutions of a nonlinear elliptic equation involving the critical exponent, Nonlinear Anal., Volume 20 (1993), pp. 571-603

[6] Han, Z.C. Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponents, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 8 (1991), pp. 159-174

[7] Rey, O. The role of the Green's function in a nonlinear elliptic equation involving critical Sobolev exponent, J. Funct. Anal., Volume 89 (1990), pp. 1-52

[8] Rey, O. Proof of two conjecture of H. Brezis and L.A. Peletier, Manuscripta Math., Volume 65 (1989), pp. 19-37

Cité par Sources :