Dans cette Note, nous étudions les fibrés vectoriels indécomposables de degré zéro sur une courbe elliptique. Nous montrons que chaque fibré engendre un anneau et une catégorie tannakienne tels que l'anneau et le schéma en groupes associé à la catégorie soient de la même dimension. De plus, nous montrons que ce résultat ne s'étend pas aux courbes de genre 2.
In this Note we study indecomposable vector bundles of degree zero over an elliptic curve. We show that each bundle generates a ring and a Tannakian category, such that the ring and the group scheme associated to the Tannakian category are of the same dimension. Furthermore we show that the result does not extend to curves of genus 2.
Accepté le :
Publié le :
@article{CRMATH_2002__335_4_351_0, author = {Lekaus, Silke}, title = {Vector bundles of degree zero over an elliptic curve}, journal = {Comptes Rendus. Math\'ematique}, pages = {351--354}, publisher = {Elsevier}, volume = {335}, number = {4}, year = {2002}, doi = {10.1016/S1631-073X(02)02478-0}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/S1631-073X(02)02478-0/} }
TY - JOUR AU - Lekaus, Silke TI - Vector bundles of degree zero over an elliptic curve JO - Comptes Rendus. Mathématique PY - 2002 SP - 351 EP - 354 VL - 335 IS - 4 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/S1631-073X(02)02478-0/ DO - 10.1016/S1631-073X(02)02478-0 LA - en ID - CRMATH_2002__335_4_351_0 ER -
%0 Journal Article %A Lekaus, Silke %T Vector bundles of degree zero over an elliptic curve %J Comptes Rendus. Mathématique %D 2002 %P 351-354 %V 335 %N 4 %I Elsevier %U http://archive.numdam.org/articles/10.1016/S1631-073X(02)02478-0/ %R 10.1016/S1631-073X(02)02478-0 %G en %F CRMATH_2002__335_4_351_0
Lekaus, Silke. Vector bundles of degree zero over an elliptic curve. Comptes Rendus. Mathématique, Tome 335 (2002) no. 4, pp. 351-354. doi : 10.1016/S1631-073X(02)02478-0. http://archive.numdam.org/articles/10.1016/S1631-073X(02)02478-0/
[1] On the Krull–Schmidt theorem with application to sheaves, Bull. Soc. Math. France, Volume 84 (1956), pp. 307-317 (= Coll. Works, I, 81–93)
[2] Vector bundles over an elliptic curve, Proc. London Math. Soc. (3), Volume 7 (1957), pp. 414-452 (= Coll. Works, I, 103–143)
[3] Hodge Cycles, Motives, and Shimura Varieties, Lecture Notes in Math., 900, Springer-Verlag, 1982
[4] Representation Theory. A First Course, Graduate Texts in Math., 129, Springer-Verlag, 1991
[5] Algebraic Geometry, Graduate Texts in Math., 52, Springer-Verlag, 1977
[6] On the calculation of some differential Galois groups, Invent. Math., Volume 87 (1987), pp. 13-61
[7] Geometric Invariant Theory, Ergeb. Math. Grenzgeb. (3), 34, Springer-Verlag, 1993
[8] Stable and unitary bundles on a compact Riemann surface, Ann. of Math., Volume 82 (1965), pp. 540-564
[9] On the representations of the fundamental group, Compositio Math., Volume 33 (1976), pp. 29-41
[10] Catégories tannakiennes, Lecture Notes in Math., 265, Springer-Verlag, 1972
Cité par Sources :