A result on the 𝐀 ^ and elliptic genera on non-spin manifolds with circle actions
[Un résultat sur les variétés non-spinorielles de genres A ^ et elliptique munies d'actions de S1]
Comptes Rendus. Mathématique, Tome 335 (2002) no. 4, pp. 371-374.

On montre que le A ^-genre d'une variété lisse, compacte munie d'un second groupe d'homotopie fini et dotée d'une action de S1 est égal à zéro. Ces variétés ne sont pas nécessairement spinorielles de sorte que ce théorème d'annulation étend le résultat d'Atiyah–Hirzebruch établi pour des variétés spinorielles avec actions de S1. La démonstration est faite à partir d'un théorème de rigidité sous des actions de S1 de genre elliptique sur ces variétés.

We prove the vanishing of the A ^-genus of compact smooth manifolds with finite second homotopy group and endowed with smooth S1 actions. These manifolds are not necessarily spin, hence, this vanishing extends that of Atiyah and Hirzebruch on spin manifolds with S1 actions. The proof is accomplished by proving a rigidity theorem under circle actions of the elliptic genus on these manifolds.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02480-9
Herrera, Haydeé 1 ; Herrera, Rafael 2

1 Department of Mathematics, Tufts University, Medford, MA 02155, USA
2 Department of Mathematics, University of California, Riverside, CA 92521, USA
@article{CRMATH_2002__335_4_371_0,
     author = {Herrera, Hayde\'e and Herrera, Rafael},
     title = {A result on the $ \hat{\mathbf{A}}$ and elliptic genera on non-spin manifolds with circle actions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {371--374},
     publisher = {Elsevier},
     volume = {335},
     number = {4},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02480-9},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/S1631-073X(02)02480-9/}
}
TY  - JOUR
AU  - Herrera, Haydeé
AU  - Herrera, Rafael
TI  - A result on the $ \hat{\mathbf{A}}$ and elliptic genera on non-spin manifolds with circle actions
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 371
EP  - 374
VL  - 335
IS  - 4
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/S1631-073X(02)02480-9/
DO  - 10.1016/S1631-073X(02)02480-9
LA  - en
ID  - CRMATH_2002__335_4_371_0
ER  - 
%0 Journal Article
%A Herrera, Haydeé
%A Herrera, Rafael
%T A result on the $ \hat{\mathbf{A}}$ and elliptic genera on non-spin manifolds with circle actions
%J Comptes Rendus. Mathématique
%D 2002
%P 371-374
%V 335
%N 4
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/S1631-073X(02)02480-9/
%R 10.1016/S1631-073X(02)02480-9
%G en
%F CRMATH_2002__335_4_371_0
Herrera, Haydeé; Herrera, Rafael. A result on the $ \hat{\mathbf{A}}$ and elliptic genera on non-spin manifolds with circle actions. Comptes Rendus. Mathématique, Tome 335 (2002) no. 4, pp. 371-374. doi : 10.1016/S1631-073X(02)02480-9. http://archive.numdam.org/articles/10.1016/S1631-073X(02)02480-9/

[1] Atiyah, M.F.; Hirzebruch, F. Spin manifolds and group actions, Essays in Topology and Related Subjects, Springer-Verlag, Berlin, 1970, pp. 18-28

[2] Bott, R.; Taubes, T. On the rigidity theorems of Witten, J. Amer. Math. Soc., Volume 2 (1989) no. 1, pp. 137-186

[3] Bredon, G.E. Representations at fixed points of smooth actions of compact groups, Ann. of Math., Volume 89 (1969) no. 2, pp. 515-532

[4] H. Herrera, R. Herrera, A ^-genus on non-spin manifolds with S1 actions and the classification of positive quaternion-Kähler 12-manifolds, IHÉS Preprint, 2001

[5] Hirzebruch, F.; Berger, T.; Jung, R. Manifolds and Modular Forms, Aspects of Math., Vieweg, 1992

[6] Hirzebruch, F.; Slodowy, P. Elliptic genera, involutions, and homogeneous spin manifolds, Geom. Dedicata, Volume 35 (1990), pp. 309-343

[7] LeBrun, C.R.; Salamon, S.M. Strong rigidity of positive quaternion-Kähler manifolds, Invent. Math., Volume 118 (1994), pp. 109-132

[8] Ochanine, S. Sur les genres multiplicatifs définis par des intégrales elliptiques, Topology, Volume 26 (1987), pp. 143-151

[9] Witten, E. Elliptic genera and quantum field theory, Comm. Math. Phys., Volume 109 (1987), p. 525

Cité par Sources :