Conductors of wildly ramified covers, I
[Conducteurs des revêtements avec ramification sauvage, I]
Comptes Rendus. Mathématique, Tome 335 (2002) no. 5, pp. 481-484.

Soit k un corps algébriquement clos de caractéristique p. Soit ϕ:Y k 1 un revêtement fini galoisien, de groupe G, ramifié seulement au-dessus d'un point (avec ramification sauvage). Quand G est p-pur et les p-Sylow de G sont d'ordre p, on montre qu'il existe un revêtement de ce type avec un conducteur petit. La démonstration consiste à étudier la réduction semi-stable des familles des revêtements.

Consider a wildly ramified G-Galois cover of curves ϕ:Y k 1 branched at only one point over an algebraically closed field k of characteristic p. For any p-pure group G whose Sylow p-subgroups have order p, I show the existence of such a cover with small conductor. The proof uses an analysis of the semi-stable reduction of families of covers.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02491-3
Pries, Rachel J. 1

1 Department of Mathematics, Columbia University, New York, NY 10027, USA
@article{CRMATH_2002__335_5_481_0,
     author = {Pries, Rachel J.},
     title = {Conductors of wildly ramified covers, {I}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {481--484},
     publisher = {Elsevier},
     volume = {335},
     number = {5},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02491-3},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/S1631-073X(02)02491-3/}
}
TY  - JOUR
AU  - Pries, Rachel J.
TI  - Conductors of wildly ramified covers, I
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 481
EP  - 484
VL  - 335
IS  - 5
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/S1631-073X(02)02491-3/
DO  - 10.1016/S1631-073X(02)02491-3
LA  - en
ID  - CRMATH_2002__335_5_481_0
ER  - 
%0 Journal Article
%A Pries, Rachel J.
%T Conductors of wildly ramified covers, I
%J Comptes Rendus. Mathématique
%D 2002
%P 481-484
%V 335
%N 5
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/S1631-073X(02)02491-3/
%R 10.1016/S1631-073X(02)02491-3
%G en
%F CRMATH_2002__335_5_481_0
Pries, Rachel J. Conductors of wildly ramified covers, I. Comptes Rendus. Mathématique, Tome 335 (2002) no. 5, pp. 481-484. doi : 10.1016/S1631-073X(02)02491-3. http://archive.numdam.org/articles/10.1016/S1631-073X(02)02491-3/

[1] Harbater, D.; Stevenson, K. Patching and thickening problems, J. Algebra, Volume 212 (1999) no. 1, pp. 272-304

[2] Kato, K. Vanishing cycles, ramification of valuations, and class field theory, Duke Math. J., Volume 55 (1987) no. 3, pp. 629-659

[3] Katz, N. Local-to-global extensions of representations of fundamental groups, Ann. Inst. Fourier (Grenoble), Volume 36 (1986) no. 4, pp. 69-106

[4] R. Pries, Families of wildly ramified covers of curves, Amer. J. Math., accepted

[5] Raynaud, M. Revêtements de la droite affine en caractéristique p>0 et conjecture d'Abhyankar, Invent. Math., Volume 116 (1994) no. 1–3, pp. 425-462

[6] Raynaud, M. Spécialisation des revêtements en caractéristique p>0, Ann. Sci. École Norm. Sup. (4), Volume 32 (1999) no. 1, pp. 87-126

[7] Saı̈di, M. Raynaud's proof of Abhyankar's conjecture for the affine line, Courbes semi-stables et groupe fondamental en géométrie algébrique, Progr. Math., 187, Birkhäuser, 2000, pp. 249-265

Cité par Sources :