Dans cette Note, on présente quelques résultats de génération de c0-semigroupe dans les espaces Lp pour l'opérateur d'advection soumis à des conditions aux limites non contractives, couvrant par exemple les conditions frontières de type Maxwell.
In this Note, we present some c0-semigroup generation results in Lp-spaces for the advection operator submitted to non-contractive boundary conditions covering in particular the classical Maxwell-type boundary conditions.
Accepté le :
Publié le :
@article{CRMATH_2002__335_7_655_0, author = {Lods, Bertrand}, title = {A generation theorem for kinetic equations with non-contractive boundary operators}, journal = {Comptes Rendus. Math\'ematique}, pages = {655--660}, publisher = {Elsevier}, volume = {335}, number = {7}, year = {2002}, doi = {10.1016/S1631-073X(02)02533-5}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/S1631-073X(02)02533-5/} }
TY - JOUR AU - Lods, Bertrand TI - A generation theorem for kinetic equations with non-contractive boundary operators JO - Comptes Rendus. Mathématique PY - 2002 SP - 655 EP - 660 VL - 335 IS - 7 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/S1631-073X(02)02533-5/ DO - 10.1016/S1631-073X(02)02533-5 LA - en ID - CRMATH_2002__335_7_655_0 ER -
%0 Journal Article %A Lods, Bertrand %T A generation theorem for kinetic equations with non-contractive boundary operators %J Comptes Rendus. Mathématique %D 2002 %P 655-660 %V 335 %N 7 %I Elsevier %U http://archive.numdam.org/articles/10.1016/S1631-073X(02)02533-5/ %R 10.1016/S1631-073X(02)02533-5 %G en %F CRMATH_2002__335_7_655_0
Lods, Bertrand. A generation theorem for kinetic equations with non-contractive boundary operators. Comptes Rendus. Mathématique, Tome 335 (2002) no. 7, pp. 655-660. doi : 10.1016/S1631-073X(02)02533-5. http://archive.numdam.org/articles/10.1016/S1631-073X(02)02533-5/
[1] Positive one parameter semigroups on ordered spaces, Acta Appl. Math., Volume 1 (1984), pp. 221-296
[2] Le transport neutronique avec des conditions aux limites générales, C. R. Acad. Sci. Paris, Série I, Volume 329 (1999), pp. 121-124
[3] Streaming operators and semigroups, Meccanica, Volume 14 (1979), pp. 119-128
[4] The Boltzmann Equation and its Applications, Springer, 1987
[5] The Mathematical Theory of Dilute Gases, Springer-Verlag, 1994
[6] Boundary Value Problems in Abstract Kinetic Theory, Birkhäuser, Basel, 1987
[7] Spectral analysis and generation results for streaming operators with multipliying boundary conditions, Positivity, Volume 3 (1999), pp. 273-296
[8] B. Lods, Théorie spectrale des équations cinétiques, Thèse, à paraı̂tre
[9] On the theory of a growing cell population with zero minimum cycle length, J. Math. Anal. Appl., Volume 266 (2001), pp. 70-99
[10] Time dependent kinetic equations with collision terms relatively bounded with respect to the collision frequency, Transport Theory Statist. Phys., Volume 30 (2001), pp. 63-90
[11] A model of prolifetaring cell population with inherited cycle length, J. Math. Biol., Volume 23 (1986), pp. 269-282
Cité par Sources :