On considère un modèle de particules quantiques en intéraction effectuant des oscillations anharmoniques uni-dimensionelles autour de leur positions d'équilibre sur le réseau . Pour ce modèle, nous énonçons deux résultats décrivant ses propriétés d'équilibre. Le premier théorème affirme l'existence de tel que pour toutes les valeurs de la masse m de la particule inférieures à , l'ensemble des mesures euclidiennes tempérées de Gibbs consiste en un seul élément, à toute température β−1. Cela résoud un problème qui est resté ouvert pour longtemps et améliore essentiellement un résultat analogue obtenu par les mêmes auteurs, lorsque dépendait de β de sorte que si β→+∞. Le deuxième théorème dit que la fonction de corrélation a une décroissance exponentielle si .
A model of interacting quantum particles performing one-dimensional anharmonic oscillations around their unstable equilibrium positions, which form the lattice , is considered. For this model, two statements describing its equilibrium properties are given. The first theorem states that there exists such that for all values of the particle mass , the set of tempered Euclidean Gibbs measures consists of exactly one element at all values of the temperature β−1. This settles a problem that was open for a long time and is an essential improvement of a similar result proved before by the same authors [1] where the boundary depended on β in such a way that for β→+∞. The second theorem states that the two-point correlation function has an exponential decay if .
Accepté le :
Publié le :
@article{CRMATH_2002__335_8_693_0, author = {Albeverio, Sergio and Kondratiev, Yuri and Kozitsky, Yuri and R\"ockner, Michael}, title = {Gibbs states of a quantum crystal: uniqueness by small particle mass}, journal = {Comptes Rendus. Math\'ematique}, pages = {693--698}, publisher = {Elsevier}, volume = {335}, number = {8}, year = {2002}, doi = {10.1016/S1631-073X(02)02545-1}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/S1631-073X(02)02545-1/} }
TY - JOUR AU - Albeverio, Sergio AU - Kondratiev, Yuri AU - Kozitsky, Yuri AU - Röckner, Michael TI - Gibbs states of a quantum crystal: uniqueness by small particle mass JO - Comptes Rendus. Mathématique PY - 2002 SP - 693 EP - 698 VL - 335 IS - 8 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/S1631-073X(02)02545-1/ DO - 10.1016/S1631-073X(02)02545-1 LA - en ID - CRMATH_2002__335_8_693_0 ER -
%0 Journal Article %A Albeverio, Sergio %A Kondratiev, Yuri %A Kozitsky, Yuri %A Röckner, Michael %T Gibbs states of a quantum crystal: uniqueness by small particle mass %J Comptes Rendus. Mathématique %D 2002 %P 693-698 %V 335 %N 8 %I Elsevier %U http://archive.numdam.org/articles/10.1016/S1631-073X(02)02545-1/ %R 10.1016/S1631-073X(02)02545-1 %G en %F CRMATH_2002__335_8_693_0
Albeverio, Sergio; Kondratiev, Yuri; Kozitsky, Yuri; Röckner, Michael. Gibbs states of a quantum crystal: uniqueness by small particle mass. Comptes Rendus. Mathématique, Tome 335 (2002) no. 8, pp. 693-698. doi : 10.1016/S1631-073X(02)02545-1. http://archive.numdam.org/articles/10.1016/S1631-073X(02)02545-1/
[1] Uniqueness for Gibbs measures of quntum lattices for small mass regime, Ann. Inst. H. Poincaré, Probab. Statist., Volume 37 (2001) no. 1, pp. 43-69
[2] S. Albeverio, Yu. Kondratiev, Yu. Kozitsky, M. Röckner, Euclidean Gibbs states for quantum lattice systems, Preprint BiBoS, Bielefeld, 2001, to appear in Rev. Math. Phys
[3] Suppression of critical fluctuations by strong quantum effects in quantum lattice systems, Comm. Math. Phys., Volume 194 (1998), pp. 493-512
[4] S. Albeverio, Yu. Kondratiev, T. Pasurek, M. Röckner, A priori estimates and existence for Euclidean Gibbs measures, Preprint BiBoS Nr. 02-06-089, Bielefeld, 2002
[5] The quasiclassical limit for the Schrödinger operator and phase transitions in quantum statistical physics, Func. Anal. Appl., Volume 26 (1992) no. 2, pp. 61-64
[6] Gibbs Measures and Phase Transitions, De Gruyter, Berlin, 1988
[7] Statistical mechanics of unbounded spins, Comm. Math. Phys., Volume 50 (1976), pp. 195-218
[8] A quantum crystal model in the light-mass limit: Gibbs states, Rev. Math. Phys., Volume 12 (2000), pp. 981-1032
[9] Quantum effects in an n-component vector model for structural phase transitions, Phys. Rev. B, Volume 13 (1976), pp. 1123-1130
Cité par Sources :