Soient une sous-variété CR analytique réelle minimale et un sous-ensemble algébrique réel avec p∈M et p′∈M′. On montre que pour toute application (holomorphe) formelle , envoyant M dans M′, et pour tout entier positif k donné, il existe un germe d'application holomorphe en p, envoyant M dans M′ et dont le jet en p d'ordre k correspond à celui de f. Si M est de plus générique, on montre qu'une telle application f, non convergente, envoie nécessairement M (en un sens approprié) dans le sous-ensemble des points de type infini au sens de D'Angelo. Ceci implique en particulier la convergence de toutes les applications formelles envoyant M dans M′, si M′ ne contient pas de sous-ensemble analytique complexe irréductible de dimension positive passant par p′.
Let be a minimal real-analytic CR-submanifold and a real-algebraic subset through points p∈M and p′∈M′ respectively. We show that that any formal (holomorphic) mapping , sending M into M′, can be approximated up to any given order at p by a convergent map sending M into M′. If M is furthermore generic, we also show that any such map f, that is not convergent, must send (in an appropriate sense) M into the set of points of D'Angelo infinite type. Therefore, if M′ does not contain any nontrivial complex-analytic subvariety through p′, any formal map f sending M into M′ is necessarily convergent.
Révisé le :
Publié le :
@article{CRMATH_2002__335_8_671_0, author = {Meylan, Francine and Mir, Nordine and Zaitsev, Dmitri}, title = {Approximation and convergence properties of formal {CR-maps}}, journal = {Comptes Rendus. Math\'ematique}, pages = {671--676}, publisher = {Elsevier}, volume = {335}, number = {8}, year = {2002}, doi = {10.1016/S1631-073X(02)02552-9}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/S1631-073X(02)02552-9/} }
TY - JOUR AU - Meylan, Francine AU - Mir, Nordine AU - Zaitsev, Dmitri TI - Approximation and convergence properties of formal CR-maps JO - Comptes Rendus. Mathématique PY - 2002 SP - 671 EP - 676 VL - 335 IS - 8 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/S1631-073X(02)02552-9/ DO - 10.1016/S1631-073X(02)02552-9 LA - en ID - CRMATH_2002__335_8_671_0 ER -
%0 Journal Article %A Meylan, Francine %A Mir, Nordine %A Zaitsev, Dmitri %T Approximation and convergence properties of formal CR-maps %J Comptes Rendus. Mathématique %D 2002 %P 671-676 %V 335 %N 8 %I Elsevier %U http://archive.numdam.org/articles/10.1016/S1631-073X(02)02552-9/ %R 10.1016/S1631-073X(02)02552-9 %G en %F CRMATH_2002__335_8_671_0
Meylan, Francine; Mir, Nordine; Zaitsev, Dmitri. Approximation and convergence properties of formal CR-maps. Comptes Rendus. Mathématique, Tome 335 (2002) no. 8, pp. 671-676. doi : 10.1016/S1631-073X(02)02552-9. http://archive.numdam.org/articles/10.1016/S1631-073X(02)02552-9/
[1] On the solutions of analytic equations, Invent. Math., Volume 5 (1968), pp. 277-291
[2] Algebraicity of holomorphic mappings between real algebraic sets in , Acta Math., Volume 177 (1996), pp. 225-273
[3] Convergence and finite determination of formal CR mappings, J. Amer. Math. Soc., Volume 13 (2000), pp. 697-723
[4] Reflection ideals and mappings between generic submanifolds in complex space, J. Geom. Anal., Volume 12 (2002) no. 4, pp. 543-580
[5] Equivalences of real submanifolds in complex space, J. Differential Geom., Volume 59 (2001), pp. 301-351
[6] Real hypersurfaces in complex manifolds, Acta Math., Volume 133 (1974), pp. 219-271
[7] Finite type and the intersection of real and complex subvarieties, Proc. Sympos. Pure Math., 52, American Mathematical Society, Providence, RI, 1991, pp. 103-117 (Part 3)
[8] Holomorphic maps of real submanifolds in complex spaces of different dimensions, Pacific J. Math., Volume 201 (2001) no. 2, pp. 357-387
[9] On the boundary behavior of holomorphic mappings, Contributions to Several Complex Variables, Aspects Math., E9, Viehweg, Braunschweig, 1986, pp. 193-215
[10] Analytic regularity of CR-mappings, Math. Res. Lett., Volume 9 (2002), pp. 73-93
[11] F. Meylan, N. Mir, D. Zaitsev, Holomorphic extension of smooth CR-mappings between real-analytic and real-algebraic CR-manifolds, Preprint, 2002, | arXiv
[12] F. Meylan, N. Mir, D. Zaitsev, Approximation and convergence of formal CR-mappings, Preprint, 2002
[13] Formal biholomorphic maps of real analytic hypersurfaces, Math. Res. Lett., Volume 7 (2000), pp. 343-359
[14] On the convergence of formal mappings, Comm. Anal. Geom., Volume 10 (2002) no. 1, pp. 23-59
[15] Normal forms for real surfaces in near complex tangents and hyperbolic surface transformations, Acta Math., Volume 150 (1983) no. 3–4, pp. 255-296
[16] Extension of CR-functions into a wedge from a manifold of finite type, Mat. Sb. (N.S.), Volume 136(178) (1988) no. 1, pp. 128-139 (in Russian). English translation: Math. USSR-Sb., 64, 1, 1989, pp. 129-140
[17] Germs of local automorphisms of real analytic CR structures and analytic dependence on the k-jets, Math. Res. Lett., Volume 4 (1997) no. 6, pp. 823-842
[18] Algebraicity of local holomorphisms between real-algebraic submanifolds of complex spaces, Acta Math., Volume 183 (1999), pp. 273-305
Cité par Sources :