On montre l'existence et l'unicité de la solution de l'équation :
We prove existence and uniqueness of solutions of the equation:
Publié le :
@article{CRMATH_2002__335_9_739_0, author = {Porretta, Alessio}, title = {Uniqueness of solutions of some elliptic equations without condition at infinity}, journal = {Comptes Rendus. Math\'ematique}, pages = {739--744}, publisher = {Elsevier}, volume = {335}, number = {9}, year = {2002}, doi = {10.1016/S1631-073X(02)02555-4}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/S1631-073X(02)02555-4/} }
TY - JOUR AU - Porretta, Alessio TI - Uniqueness of solutions of some elliptic equations without condition at infinity JO - Comptes Rendus. Mathématique PY - 2002 SP - 739 EP - 744 VL - 335 IS - 9 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/S1631-073X(02)02555-4/ DO - 10.1016/S1631-073X(02)02555-4 LA - en ID - CRMATH_2002__335_9_739_0 ER -
%0 Journal Article %A Porretta, Alessio %T Uniqueness of solutions of some elliptic equations without condition at infinity %J Comptes Rendus. Mathématique %D 2002 %P 739-744 %V 335 %N 9 %I Elsevier %U http://archive.numdam.org/articles/10.1016/S1631-073X(02)02555-4/ %R 10.1016/S1631-073X(02)02555-4 %G en %F CRMATH_2002__335_9_739_0
Porretta, Alessio. Uniqueness of solutions of some elliptic equations without condition at infinity. Comptes Rendus. Mathématique, Tome 335 (2002) no. 9, pp. 739-744. doi : 10.1016/S1631-073X(02)02555-4. http://archive.numdam.org/articles/10.1016/S1631-073X(02)02555-4/
[1] Semilinear equations in without condition at infinity, Appl. Math. Optim., Volume 12 (1984) no. 3, pp. 271-282
[2] On solutions of Δu=f(u), Comm. Pure Appl. Math., Volume 10 (1957), pp. 503-510
[3] On the inequality Δu⩾f(u), Pacific J. Math., Volume 7 (1957), pp. 1641-1647
[4] A. Porretta, Local estimates and large solutions for some elliptic equations with absorption, in preparation
[5] A. Porretta, Some uniqueness results for elliptic equations without condition at infinity, Comm. Contemp. Math., to appear
Cité par Sources :