Triplets spectraux en géométrie d'Arakelov
Comptes Rendus. Mathématique, Tome 335 (2002) no. 10, pp. 779-784.

Dans cette Note nous employons la théorie des triplets spectraux de Connes pour rapprocher le modèle de Manin du graphe dual de la fibre à l'infini d'une surface d'Arakelov et la cohomologie du cône de la monodromie locale.

In this Note, we use Connes' theory of spectral triples to provide a connection between Manin's model of the dual graph of the fiber at infinity of an Arakelov surface and the cohomology of the mapping cone of the local monodromy.

Reçu le :
Révisé le :
Publié le :
DOI : 10.1016/S1631-073X(02)02569-4
Consani, Caterina 1 ; Marcolli, Matilde 2

1 Département de mathématiques, Université de Toronto, Canada
2 Max-Planck Institut für Mathematik, Bonn, Allemagne
@article{CRMATH_2002__335_10_779_0,
     author = {Consani, Caterina and Marcolli, Matilde},
     title = {Triplets spectraux en g\'eom\'etrie {d'Arakelov}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {779--784},
     publisher = {Elsevier},
     volume = {335},
     number = {10},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02569-4},
     language = {fr},
     url = {http://archive.numdam.org/articles/10.1016/S1631-073X(02)02569-4/}
}
TY  - JOUR
AU  - Consani, Caterina
AU  - Marcolli, Matilde
TI  - Triplets spectraux en géométrie d'Arakelov
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 779
EP  - 784
VL  - 335
IS  - 10
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/S1631-073X(02)02569-4/
DO  - 10.1016/S1631-073X(02)02569-4
LA  - fr
ID  - CRMATH_2002__335_10_779_0
ER  - 
%0 Journal Article
%A Consani, Caterina
%A Marcolli, Matilde
%T Triplets spectraux en géométrie d'Arakelov
%J Comptes Rendus. Mathématique
%D 2002
%P 779-784
%V 335
%N 10
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/S1631-073X(02)02569-4/
%R 10.1016/S1631-073X(02)02569-4
%G fr
%F CRMATH_2002__335_10_779_0
Consani, Caterina; Marcolli, Matilde. Triplets spectraux en géométrie d'Arakelov. Comptes Rendus. Mathématique, Tome 335 (2002) no. 10, pp. 779-784. doi : 10.1016/S1631-073X(02)02569-4. http://archive.numdam.org/articles/10.1016/S1631-073X(02)02569-4/

[1] Bowen, R. Hausdorff dimension of quasi-circles, Publ. Math. IHES, Volume 50 (1979), pp. 11-25

[2] Boyle, M.; Handelman, D. Orbit equivalence, flow equivalence, and ordered cohomology, Israel J. Math, Volume 95 (1996), pp. 169-210

[3] Connes, A. Geometry from the spectral point of view, Lett. Math. Phys, Volume 34 (1995) no. 3, pp. 203-238

[4] Consani, C. Double complexes and Euler L-factors, Compositio Math, Volume 111 (1998), pp. 323-358

[5] Consani, C.; Marcolli, M. Non-commutative geometry, dynamics, and ∞-adic Arakelov geometry MPIM preprint (13) 2002 | arXiv

[6] Cuntz, J.; Krieger, W. A class of C * -algebras and topological Markov chains, Invent. Math, Volume 56 (1980), pp. 251-268

[7] Deninger, C. On the Γ-factors attached to motives, Invent. Math, Volume 104 (1991), pp. 245-261

[8] Manin, Yu.I. Three-dimensional hyperbolic geometry as ∞-adic Arakelov geometry, Invent. Math, Volume 104 (1991), pp. 223-244

[9] Parry, W.; Tuncel, S. Classification problems in ergodic theory, London Math. Soc. Lecture Note Ser, 67, 1982

[10] Putnam, I. C * -algebras from Smale spaces, Canadian J. Math, Volume 48 (1996) no. 1, pp. 175-195

[11] Saito, M. Modules de Hodge polarisable, Publ. Res. Inst. Math. Sci, Volume 24 (1988), pp. 849-995

[12] Serre, J.P. Facteurs locaux des fonctions zêta des variétés algébriques (définitions et conjectures), Sém. Delange–Pisot–Poitou, Volume 19 (1969/70)

[13] Wells, R.O. Differential Analysis on Complex Manifolds, Springer-Verlag, 1980

Cité par Sources :