Pour les séries chronologiques qui ne sont pas stationnaires, la méthode de bloc re-échantillonnage n'est pas directement applicable. Cependant, si la structure stochastique fondamentale change lentement, on peut utiliser une méthode de bloc re-échantillonnage local. Nous définissons une telle procédure et donnons un exemple de son applicabilité.
For time series that are not stationary, the block bootstrap method is not directly applicable. However, if the underlying stochastic structure is slowly changing with time, one may employ a local block-resampling procedure. We define such a procedure, and give an example of its applicability.
Révisé le :
Publié le :
@article{CRMATH_2002__335_11_959_0, author = {Paparoditis, Efstathios and Politis, Dimitris N.}, title = {Local block bootstrap}, journal = {Comptes Rendus. Math\'ematique}, pages = {959--962}, publisher = {Elsevier}, volume = {335}, number = {11}, year = {2002}, doi = {10.1016/S1631-073X(02)02578-5}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/S1631-073X(02)02578-5/} }
TY - JOUR AU - Paparoditis, Efstathios AU - Politis, Dimitris N. TI - Local block bootstrap JO - Comptes Rendus. Mathématique PY - 2002 SP - 959 EP - 962 VL - 335 IS - 11 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/S1631-073X(02)02578-5/ DO - 10.1016/S1631-073X(02)02578-5 LA - en ID - CRMATH_2002__335_11_959_0 ER -
%0 Journal Article %A Paparoditis, Efstathios %A Politis, Dimitris N. %T Local block bootstrap %J Comptes Rendus. Mathématique %D 2002 %P 959-962 %V 335 %N 11 %I Elsevier %U http://archive.numdam.org/articles/10.1016/S1631-073X(02)02578-5/ %R 10.1016/S1631-073X(02)02578-5 %G en %F CRMATH_2002__335_11_959_0
Paparoditis, Efstathios; Politis, Dimitris N. Local block bootstrap. Comptes Rendus. Mathématique, Tome 335 (2002) no. 11, pp. 959-962. doi : 10.1016/S1631-073X(02)02578-5. http://archive.numdam.org/articles/10.1016/S1631-073X(02)02578-5/
[1] On the Kullback–Leibler information divergence of locally stationary processes, Stochastic Process. Appl, Volume 62 (1996), pp. 139-168
[2] Fitting time series models to nonstationary processes, Ann. Statist, Volume 25 (1997), pp. 1-37
[3] The Jackknife and the bootstrap for general stationary observations, Ann. Statist, Volume 17 (1989), pp. 1217-1241
[4] Subsampling, Springer, New York, 1999
[5] Non-Linear and Non-Stationary Time Series Analysis, Academic Press, London, 1988
[6] Fixed design regression for time series: asymptotic normality, J. Multivariate Anal, Volume 40 (1992), pp. 262-291
[7] Local bootstrap, Ann. Inst. Statist. Math, Volume 43 (1991), pp. 667-676
Cité par Sources :