Soit pb(x,t,y) la densité de la probabilité de transition du processus de diffusion , où |b(·)|∞⩽1. Nous montrons que la borne supérieure (resp. la borne inférieure) de pb(x,t,y) est atteinte pour (x,t,y) fixés quand b(z)=sgn(y−z) (resp. quand b(z)=sgn(z−y)). Les bornes explicites sont présentées.
Let pb(x,t,y) be the transition probability density of the one dimensional diffusion process , where |b(·)|∞⩽1. We show that the upper and lower bounds of pb(x,t,y) are achieved for fixed (x,t,y) when b(z)=sgn(y−z) and b(z)=sgn(z−y) respectively. Moreover, the precise bounds are given.
Révisé le :
Publié le :
@article{CRMATH_2002__335_11_953_0, author = {Qian, Zhongmin and Zheng, Weian}, title = {Sharp bounds for transition probability densities of a class of diffusions}, journal = {Comptes Rendus. Math\'ematique}, pages = {953--957}, publisher = {Elsevier}, volume = {335}, number = {11}, year = {2002}, doi = {10.1016/S1631-073X(02)02579-7}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/S1631-073X(02)02579-7/} }
TY - JOUR AU - Qian, Zhongmin AU - Zheng, Weian TI - Sharp bounds for transition probability densities of a class of diffusions JO - Comptes Rendus. Mathématique PY - 2002 SP - 953 EP - 957 VL - 335 IS - 11 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/S1631-073X(02)02579-7/ DO - 10.1016/S1631-073X(02)02579-7 LA - en ID - CRMATH_2002__335_11_953_0 ER -
%0 Journal Article %A Qian, Zhongmin %A Zheng, Weian %T Sharp bounds for transition probability densities of a class of diffusions %J Comptes Rendus. Mathématique %D 2002 %P 953-957 %V 335 %N 11 %I Elsevier %U http://archive.numdam.org/articles/10.1016/S1631-073X(02)02579-7/ %R 10.1016/S1631-073X(02)02579-7 %G en %F CRMATH_2002__335_11_953_0
Qian, Zhongmin; Zheng, Weian. Sharp bounds for transition probability densities of a class of diffusions. Comptes Rendus. Mathématique, Tome 335 (2002) no. 11, pp. 953-957. doi : 10.1016/S1631-073X(02)02579-7. http://archive.numdam.org/articles/10.1016/S1631-073X(02)02579-7/
[1] Bounds for the fundamental solution of a parabolic equation, Bull. Amer. Math. Soc., Volume 73 (1967), pp. 890-896
[2] A singular large deviations phenomenon, Ann. Inst. H. Poincaré Probab. Statist., Volume 37 (2001) no. 5, pp. 555-580
[3] Brownian Motion and Stochastic Calculus, Springer-Verlag, 1988
[4] On conditional diffusion processes, Proc. Roy. Soc. Edinburgh Sect. A, Volume 115 (1990), pp. 243-255
[5] Continuous Martingales and Brownian Motion, Springer-Verlag, 1991
[6] Diffusion semigroups corresponding to uniformly elliptic divergence form operators, Séminaire de Probabilités, Vol. XXII, Lecture Notes in Math., 1321, 1986, pp. 316-347
Cité par Sources :