Graph-theoretical methods in general function theory
[Théorie des graphes dans la théorie generale des fonctions]
Comptes Rendus. Mathématique, Tome 335 (2002) no. 11, pp. 859-861.

On considère deux applications f et g d'un ensemble E dans un ensemble F telles que f(x)≠g(x) pour tout x dans E. Quel est le cardinal maximal d'un sous-ensemble A de E tel que les images des restrictions de f et g à A soient disjointes ? Dans le cas où E est infini, la réponse est card(E), comme l'ont montré Mekler, Pelletier et Taylor ; dans le cas fini, nous avons prouvé que le cardinal en question est plus grand ou égale à card(E)/4. Dans cet article, en utilisant les outils de la théorie des graphes, nous retrouvons ces resultats comme application directe d'un lemme d'Erdös. Nous démontrons de plus que si E=F=, alors il existe une partition dénombrable {En}n⩾1 de telle que f(En)∩g(En)=φ, pour tout n⩾1.

Consider two maps f and g from a set E into a set F such that f(x)≠g(x) for every x in E. What is the maximal cardinal of a subset A of E such that the images of the restriction of f and g to A are disjoint? Mekler, Pelletier and Taylor have shown that it is card(E) when the set E is infinite; in the finite case, we have proved that it is greater than or equal to card(E)/4. In this paper, using graph theoretical technics, we find these results as a direct application of a lemma of Erdös. Moreover, we show that if E=F=, then there exists a countable partition {En}n⩾1 of such that f(En)∩g(En)=φ, for every n⩾1.

Reçu le :
Révisé le :
Publié le :
DOI : 10.1016/S1631-073X(02)02585-2
El Sahili, Amine 1, 2

1 Lebanese university I, El hadas, Beyrout, Lebanon
2 El sahili Amine, BP 93, Tyr-Lebanon, Lebanon
@article{CRMATH_2002__335_11_859_0,
     author = {El Sahili, Amine},
     title = {Graph-theoretical methods in general function theory},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {859--861},
     publisher = {Elsevier},
     volume = {335},
     number = {11},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02585-2},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/S1631-073X(02)02585-2/}
}
TY  - JOUR
AU  - El Sahili, Amine
TI  - Graph-theoretical methods in general function theory
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 859
EP  - 861
VL  - 335
IS  - 11
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/S1631-073X(02)02585-2/
DO  - 10.1016/S1631-073X(02)02585-2
LA  - en
ID  - CRMATH_2002__335_11_859_0
ER  - 
%0 Journal Article
%A El Sahili, Amine
%T Graph-theoretical methods in general function theory
%J Comptes Rendus. Mathématique
%D 2002
%P 859-861
%V 335
%N 11
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/S1631-073X(02)02585-2/
%R 10.1016/S1631-073X(02)02585-2
%G en
%F CRMATH_2002__335_11_859_0
El Sahili, Amine. Graph-theoretical methods in general function theory. Comptes Rendus. Mathématique, Tome 335 (2002) no. 11, pp. 859-861. doi : 10.1016/S1631-073X(02)02585-2. http://archive.numdam.org/articles/10.1016/S1631-073X(02)02585-2/

[1] El Sahili, A. Functions with disjoint graphs, C. R. Acad. Sci. Paris, Série I, Volume 319 (1994), pp. 519-521

[2] Erdös, P. On some extremal problems in graph theory, Israel J. Math. (1965), pp. 113-116

[3] Erdös, P.; Hajnal, A. On chromatic number of infinite graphs, Theory of Graphs (Proc. Colloq., Tihany, 1966), Academic Press, 1968, pp. 83-98

[4] Mekler, A.H.; Pelletier, D.H.; Taylor, A.D. A separation theorem, Abstracts Amer. Math. Soc. (1982), p. 593

Cité par Sources :