Dans cette Note, nous montrons comment une version non-commutative du principe d'extremalisation de l'entropie permet de construire de nouveaux modèles hydrodynamiques quantiques.
In this Note, we show how a non-commutative version of the entropy extremalization principle allows one to construct new quantum hydrodynamic models.
Accepté le :
Publié le :
@article{CRMATH_2002__335_11_967_0, author = {Degond, Pierre and Ringhofer, Christian}, title = {A {Note} on quantum moment hydrodynamics and the entropy principle}, journal = {Comptes Rendus. Math\'ematique}, pages = {967--972}, publisher = {Elsevier}, volume = {335}, number = {11}, year = {2002}, doi = {10.1016/S1631-073X(02)02595-5}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/S1631-073X(02)02595-5/} }
TY - JOUR AU - Degond, Pierre AU - Ringhofer, Christian TI - A Note on quantum moment hydrodynamics and the entropy principle JO - Comptes Rendus. Mathématique PY - 2002 SP - 967 EP - 972 VL - 335 IS - 11 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/S1631-073X(02)02595-5/ DO - 10.1016/S1631-073X(02)02595-5 LA - en ID - CRMATH_2002__335_11_967_0 ER -
%0 Journal Article %A Degond, Pierre %A Ringhofer, Christian %T A Note on quantum moment hydrodynamics and the entropy principle %J Comptes Rendus. Mathématique %D 2002 %P 967-972 %V 335 %N 11 %I Elsevier %U http://archive.numdam.org/articles/10.1016/S1631-073X(02)02595-5/ %R 10.1016/S1631-073X(02)02595-5 %G en %F CRMATH_2002__335_11_967_0
Degond, Pierre; Ringhofer, Christian. A Note on quantum moment hydrodynamics and the entropy principle. Comptes Rendus. Mathématique, Tome 335 (2002) no. 11, pp. 967-972. doi : 10.1016/S1631-073X(02)02595-5. http://archive.numdam.org/articles/10.1016/S1631-073X(02)02595-5/
[1] P. Degond, C. Ringhofer, Quantum moment hydrodynamics and the entropy principle, Manuscript
[2] Modelling of quantum transport in semiconductor devices, Solid State Phys, Volume 49 (1995), pp. 283-448
[3] The quantum hydrodynamic model for semiconductor devices, SIAM J. Appl. Math, Volume 54 (1994), pp. 409-427
[4] The smooth quantum potential for the hydrodynamic model, Phys. Rev. E, Volume 53 (1996), pp. 157-167
[5] The Chapman–Enskog expansion and the quantum hydrodynamic model for semiconductor devices, VLSI Design, Volume 10 (2000), pp. 415-435
[6] Closure conditions for classical and quantum moment hierarchies in the small temperature limit, Transport Theory Statist. Phys, Volume 25 (1996), pp. 409-423
[7] Quantum moment balance equations and resonant tunneling structures, Solid State Electron, Volume 32 (1989), pp. 1071-1075
[8] Moment closure hierarchies for kinetic theories, J. Statist. Phys, Volume 83 (1996), pp. 1021-1065
[9] arXiv
(arXiv: v2 11 Sep 1999) |[10] Zubarev's method of a nonequilibrium statistical operator and some challenges in the theory of irreversible processes, Condensed Matter Phys, Volume 1 (1998), pp. 673-686
[11] Rational Extended Thermodynamics, Springer Tracts Nat. Philos, 37, Springer, 1998
[12] Pseudodifferential Operators and Spectral Theory, Springer, 1980
[13] Statistical Mechanics of Nonequilibrium Processes, Vol. 1, Basic Concepts, Kinetic Theory, Akademie-Verlag, Berlin, 1996
Cité par Sources :