Pour les polynômes de deux variables complexes, nous construisons des contre-exemples aux questions suivantes : à équivalence topologique près, peut-on toujours trouver une équation réelle à un polynôme complexe (Lee Rudolph) ? Deux polynômes topologiquement équivalents peuvent-ils être reliés par une famille de polynômes topologiquement équivalents ?
Using the same method we provide negative answers to the following questions: is it possible to find real equations for complex polynomials in two variables up to topological equivalence (Lee Rudolph)? Can two topologically equivalent polynomials be connected by a continuous family of topologically equivalent polynomials?
Accepté le :
Publié le :
@article{CRMATH_2002__335_12_1039_0, author = {Bodin, Arnaud}, title = {Non-reality and non-connectivity of complex polynomials}, journal = {Comptes Rendus. Math\'ematique}, pages = {1039--1042}, publisher = {Elsevier}, volume = {335}, number = {12}, year = {2002}, doi = {10.1016/S1631-073X(02)02597-9}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/S1631-073X(02)02597-9/} }
TY - JOUR AU - Bodin, Arnaud TI - Non-reality and non-connectivity of complex polynomials JO - Comptes Rendus. Mathématique PY - 2002 SP - 1039 EP - 1042 VL - 335 IS - 12 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/S1631-073X(02)02597-9/ DO - 10.1016/S1631-073X(02)02597-9 LA - en ID - CRMATH_2002__335_12_1039_0 ER -
%0 Journal Article %A Bodin, Arnaud %T Non-reality and non-connectivity of complex polynomials %J Comptes Rendus. Mathématique %D 2002 %P 1039-1042 %V 335 %N 12 %I Elsevier %U http://archive.numdam.org/articles/10.1016/S1631-073X(02)02597-9/ %R 10.1016/S1631-073X(02)02597-9 %G en %F CRMATH_2002__335_12_1039_0
Bodin, Arnaud. Non-reality and non-connectivity of complex polynomials. Comptes Rendus. Mathématique, Tome 335 (2002) no. 12, pp. 1039-1042. doi : 10.1016/S1631-073X(02)02597-9. http://archive.numdam.org/articles/10.1016/S1631-073X(02)02597-9/
[1] Real deformations and complex topology of plane curve singularities, Ann. Fac. Sci. Toulouse Math., Volume 8 (1999), pp. 5-23
[2] E. Artal, J. Carmona, J. Cogolludo, Effective invariants of braid monodromy and topology of plane curves, Preprint
[3] The Jacobian conjecture: reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc., Volume 7 (1982), pp. 287-330
[4] Classification of polynomials from to with one critical value, Math. Z., Volume 242 (2002), pp. 303-322
[5] A. Bodin, Invariance of Milnor numbers and topology of complex polynomials, Comment. Math. Helv., to appear
[6] A. Bodin, Computation of Milnor numbers and critical values in affine space and at infinity, Preprint
[7] Three-Dimensional Link Theory and Invariants of Plane Curve Singularities, Ann. Math. Stud., 110, Princeton University Press, 1985
[8] G.-M. Greuel, G. Pfister, H. Schönemann, Singular 2.0: a computer algebra system for polynomial computations. Centre for Computer Algebra, University of Kaiserslautern, 2001
[9] Diffeomorphisms, isotopies, and braid monodromy factorizations of plane cuspidal curves, C. R. Acad. Sci. Paris, Série I, Volume 333 (2001), pp. 855-859
[10] L. Rudolph, Private communication, Geneva, 1998
Cité par Sources :