Dans cette Note nous présentons des résultats d'existence des solutions radiales pour l'équa- tion elliptique non linéare
(∗) |
In this Note we present some results on the existence of radially symmetric solutions for the nonlinear elliptic equation
(∗) |
Publié le :
@article{CRMATH_2002__335_11_909_0, author = {Felmer, Patricio L. and Quaas, Alexander}, title = {Critical exponents for the {Pucci's} extremal operators}, journal = {Comptes Rendus. Math\'ematique}, pages = {909--914}, publisher = {Elsevier}, volume = {335}, number = {11}, year = {2002}, doi = {10.1016/S1631-073X(02)02605-5}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/S1631-073X(02)02605-5/} }
TY - JOUR AU - Felmer, Patricio L. AU - Quaas, Alexander TI - Critical exponents for the Pucci's extremal operators JO - Comptes Rendus. Mathématique PY - 2002 SP - 909 EP - 914 VL - 335 IS - 11 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/S1631-073X(02)02605-5/ DO - 10.1016/S1631-073X(02)02605-5 LA - en ID - CRMATH_2002__335_11_909_0 ER -
%0 Journal Article %A Felmer, Patricio L. %A Quaas, Alexander %T Critical exponents for the Pucci's extremal operators %J Comptes Rendus. Mathématique %D 2002 %P 909-914 %V 335 %N 11 %I Elsevier %U http://archive.numdam.org/articles/10.1016/S1631-073X(02)02605-5/ %R 10.1016/S1631-073X(02)02605-5 %G en %F CRMATH_2002__335_11_909_0
Felmer, Patricio L.; Quaas, Alexander. Critical exponents for the Pucci's extremal operators. Comptes Rendus. Mathématique, Tome 335 (2002) no. 11, pp. 909-914. doi : 10.1016/S1631-073X(02)02605-5. http://archive.numdam.org/articles/10.1016/S1631-073X(02)02605-5/
[1] Fully Nonlinear Elliptic Equation, Colloquium Publication, 43, American Mathematical Society, 1995
[2] Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., Volume 42 (1989) no. 3, pp. 271-297
[3] A geometric proof of Kwong–Mc Leod uniqueness result, SIAM J. Math. Anal., Volume 24 (1993), pp. 436-443
[4] Uniqueness of the ground state solution for Δu−u+u3=0 and a variational characterization of other solutions, Arch. Rational Mech. Anal., Volume 46 (1972), pp. 81-95
[5] On the Liouville property for fully nonlinear equations, Ann. Inst. H. Poincaré Analyse Non Linéaire, Volume 17 (2000) no. 2, pp. 219-245
[6] Structure of positive radial solutions of semilinear elliptic equation, J. Differential Equations, Volume 133 (1997), pp. 179-202
[7] P. Felmer, A. Quaas, On critical exponents for the Pucci's extremal operators, Ann. Inst. H. Poincaré Analyse Non Linéaire, to appear
[8] Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., Volume 34 (1981), pp. 525-598
[9] Existence and asymptotic behavior of nodal solution for semilinear elliptic equation, J. Differential Equations, Volume 106 (1993), pp. 238-245
[10] The heavy rotating string – a nonlinear eigenvalue problem, Comm. Pure Appl. Math., Volume 8 (1955), pp. 395-408
[11] Uniqueness of positive solution of Δu−u+up=0 in , Arch. Rational Mech. Anal., Volume 105 (1989), pp. 243-266
[12] Uniqueness of positive solution of Δu+f(u)=0 in an annulus, Differential Integral Equations, Volume 4 (1991), pp. 583-596
[13] Eigenfunctions of the equation Δu+λf(u)=0, Soviet Math., Volume 5 (1965), pp. 1408-1411
Cité par Sources :