Critical exponents for the Pucci's extremal operators
[Les exposants critiques pour l'opérateur extrémal de Pucci]
Comptes Rendus. Mathématique, Tome 335 (2002) no. 11, pp. 909-914.

Dans cette Note nous présentons des résultats d'existence des solutions radiales pour l'équa- tion elliptique non linéare

λ,Λ + (D 2 u)+u p =0,u0 dans N ,(∗)
N⩾3, p>1 et λ,Λ + est l'opérateur extrémal de Pucci avec les paramètres 0<λ⩽Λ. L'objectif de cette Note est décrire l'ensemble des solutions en fonction de p. On trouve des exposants critiques 1<p + s <p + * <p + p tels que : (i) Si 1<p<p + * , alors il n'existe pas de solution non triviale de (*). (ii) Si p=p + * , il existe une unique solution de (*) à décroisssance rapide. (iii) Si p * <pp + p , il existe une unique solution de (*) à décroissance pseudo-lente. (iv) Si pp+<p, il existe une unique solution de (*) à décroissance lente. Un résultat similaire peut se démontrer pour λ,Λ - .

In this Note we present some results on the existence of radially symmetric solutions for the nonlinear elliptic equation

λ,Λ + (D 2 u)+u p =0,u0in N .(∗)
Here N⩾3, p>1 and λ,Λ + denotes the Pucci's extremal operators with parameters 0<λ⩽Λ. The goal is to describe the solution set as function of the parameter p. We find critical exponents 1<p + s <p + * <p + p , that satisfy: (i) If 1<p<p + * then there is no nontrivial solution of (*). (ii) If p=p + * then there is a unique fast decaying solution of (*). (iii) If p * <pp + p then there is a unique pseudo-slow decaying solution to (*). (iv) If pp+<p then there is a unique slow decaying solution to (*). Similar results are obtained for the operator λ,Λ - .

Reçu le :
Publié le :
DOI : 10.1016/S1631-073X(02)02605-5
Felmer, Patricio L. 1 ; Quaas, Alexander 1

1 Departamento de Ingenierı́a Matemática and Centro de Modelamiento Matemático, UMR2071 CNRS-UChile, Universidad de Chile, Casilla 170 Correo 3, Santiago, Chile
@article{CRMATH_2002__335_11_909_0,
     author = {Felmer, Patricio L. and Quaas, Alexander},
     title = {Critical exponents for the {Pucci's} extremal operators},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {909--914},
     publisher = {Elsevier},
     volume = {335},
     number = {11},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02605-5},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/S1631-073X(02)02605-5/}
}
TY  - JOUR
AU  - Felmer, Patricio L.
AU  - Quaas, Alexander
TI  - Critical exponents for the Pucci's extremal operators
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 909
EP  - 914
VL  - 335
IS  - 11
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/S1631-073X(02)02605-5/
DO  - 10.1016/S1631-073X(02)02605-5
LA  - en
ID  - CRMATH_2002__335_11_909_0
ER  - 
%0 Journal Article
%A Felmer, Patricio L.
%A Quaas, Alexander
%T Critical exponents for the Pucci's extremal operators
%J Comptes Rendus. Mathématique
%D 2002
%P 909-914
%V 335
%N 11
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/S1631-073X(02)02605-5/
%R 10.1016/S1631-073X(02)02605-5
%G en
%F CRMATH_2002__335_11_909_0
Felmer, Patricio L.; Quaas, Alexander. Critical exponents for the Pucci's extremal operators. Comptes Rendus. Mathématique, Tome 335 (2002) no. 11, pp. 909-914. doi : 10.1016/S1631-073X(02)02605-5. http://archive.numdam.org/articles/10.1016/S1631-073X(02)02605-5/

[1] Cabré, X.; Caffarelli, L.A. Fully Nonlinear Elliptic Equation, Colloquium Publication, 43, American Mathematical Society, 1995

[2] Caffarelli, L.; Gidas, B.; Spruck, J. Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., Volume 42 (1989) no. 3, pp. 271-297

[3] Clemons, C.; Jones, C. A geometric proof of Kwong–Mc Leod uniqueness result, SIAM J. Math. Anal., Volume 24 (1993), pp. 436-443

[4] Coffman, C. Uniqueness of the ground state solution for Δuu+u3=0 and a variational characterization of other solutions, Arch. Rational Mech. Anal., Volume 46 (1972), pp. 81-95

[5] Cutri, A.; Leoni, F. On the Liouville property for fully nonlinear equations, Ann. Inst. H. Poincaré Analyse Non Linéaire, Volume 17 (2000) no. 2, pp. 219-245

[6] Erbe, L.; Tang, M. Structure of positive radial solutions of semilinear elliptic equation, J. Differential Equations, Volume 133 (1997), pp. 179-202

[7] P. Felmer, A. Quaas, On critical exponents for the Pucci's extremal operators, Ann. Inst. H. Poincaré Analyse Non Linéaire, to appear

[8] Gidas, B.; Spruck, J. Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., Volume 34 (1981), pp. 525-598

[9] Kajikiya, R. Existence and asymptotic behavior of nodal solution for semilinear elliptic equation, J. Differential Equations, Volume 106 (1993), pp. 238-245

[10] Kolodner, I. The heavy rotating string – a nonlinear eigenvalue problem, Comm. Pure Appl. Math., Volume 8 (1955), pp. 395-408

[11] Kwong, M.K. Uniqueness of positive solution of Δuu+up=0 in N , Arch. Rational Mech. Anal., Volume 105 (1989), pp. 243-266

[12] Kwong, M.K.; Zhang, L. Uniqueness of positive solution of Δu+f(u)=0 in an annulus, Differential Integral Equations, Volume 4 (1991), pp. 583-596

[13] Pohozaev, S.I. Eigenfunctions of the equation Δu+λf(u)=0, Soviet Math., Volume 5 (1965), pp. 1408-1411

Cité par Sources :