Soit X un processus stochastique localement auto-similaire d'exposant 0<H<1 dont les trajectoires sont p.s. CH−ε pour tout ε>0. Alors la dimension de Hausdorff du graphe de X est p.s. 2−H.
Let X be a locally self-similar stochastic process of index 0<H<1 whose sample paths are a.s. CH−ε for all ε>0. Then the Hausdorff dimension of the graph of X is a.s. 2−H.
Accepté le :
Publié le :
@article{CRMATH_2003__336_3_267_0, author = {Benassi, Albert and Cohen, Serge and Istas, Jacques}, title = {Local self-similarity and the {Hausdorff} dimension}, journal = {Comptes Rendus. Math\'ematique}, pages = {267--272}, publisher = {Elsevier}, volume = {336}, number = {3}, year = {2003}, doi = {10.1016/S1631-073X(03)00015-3}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/S1631-073X(03)00015-3/} }
TY - JOUR AU - Benassi, Albert AU - Cohen, Serge AU - Istas, Jacques TI - Local self-similarity and the Hausdorff dimension JO - Comptes Rendus. Mathématique PY - 2003 SP - 267 EP - 272 VL - 336 IS - 3 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/S1631-073X(03)00015-3/ DO - 10.1016/S1631-073X(03)00015-3 LA - en ID - CRMATH_2003__336_3_267_0 ER -
%0 Journal Article %A Benassi, Albert %A Cohen, Serge %A Istas, Jacques %T Local self-similarity and the Hausdorff dimension %J Comptes Rendus. Mathématique %D 2003 %P 267-272 %V 336 %N 3 %I Elsevier %U http://archive.numdam.org/articles/10.1016/S1631-073X(03)00015-3/ %R 10.1016/S1631-073X(03)00015-3 %G en %F CRMATH_2003__336_3_267_0
Benassi, Albert; Cohen, Serge; Istas, Jacques. Local self-similarity and the Hausdorff dimension. Comptes Rendus. Mathématique, Tome 336 (2003) no. 3, pp. 267-272. doi : 10.1016/S1631-073X(03)00015-3. http://archive.numdam.org/articles/10.1016/S1631-073X(03)00015-3/
[1] A. Ayache, F. Roueff, Hausdorff dimension of some random continuous graphs, Preprint, 2002
[2] A. Ayache, F. Roueff, Dimension de Hausdorff locale des séries aléatoires d'ondelettes, Seminar the Journées Fractals Aléatoires, Université Paris XII, Créteil, Septembre 2001
[3] A. Ayache, F. Roueff, A Fourier formulation of the Frostman criterion for random graphs and its applications to wavelet series, Letter to the editor, Appl. Comput. Harmonic Anal., to appear
[4] Identifying the multifractional function of a Gaussian process, Statist. Probab. Lett., Volume 39 (1998), pp. 337-345
[5] Identification of filtered white noises, Stochastics Process Appl., Volume 75 (1998), pp. 31-49
[6] Identification and properties of real harmonizable fractional Lévy motions, Bernoulli, Volume 8 (2002), pp. 97-115
[7] Gaussian processes and pseudodifferential elliptic operators, Rev. Math. Iberoamericana, Volume 13 (1996) no. 1, pp. 19-90
[8] Fractal Geometry, Lecture Notes, Monograph Series, Wiley, 1990
[9] R. Peltier, J. Lévy-Vehel, Multifractional Brownian motion: definition and preliminary results, Rapport de recherche de l'INRIA 2645, 1995
[10] Stable Non-Gaussian Random Processes, Chapmann and Hall, 1994
Cité par Sources :