Combinatorics
New results on the Erdös–Szemerédi sum-product problems
[Nouveaux résultats sur les problèmes sommes-produits d'Erdös et Szemerédi]
Comptes Rendus. Mathématique, Tome 336 (2003) no. 3, pp. 201-205.

Dans cette Note, nous présentons diverses contributions (ou solutions) à des questions concernant la taille d'ensembles somme et produit d'ensembles finis d'entiers (ou de nombres complexes), posées dans [8]. Nous introduisons également quelques méthodes nouvelles dans ce domaine de recherche.

In this Note, we present several contributions (or solutions) to problems related to the sizes of sum sets and product sets of integers (or complex numbers), considered in [8]. We also introduce some new methods in this area of research.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00018-9
Chang, Mei-Chu 1

1 University of California at Riverside, Department of Mathematics, Riverside, CA 92521, USA
@article{CRMATH_2003__336_3_201_0,
     author = {Chang, Mei-Chu},
     title = {New results on the {Erd\"os{\textendash}Szemer\'edi} sum-product problems},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {201--205},
     publisher = {Elsevier},
     volume = {336},
     number = {3},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00018-9},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/S1631-073X(03)00018-9/}
}
TY  - JOUR
AU  - Chang, Mei-Chu
TI  - New results on the Erdös–Szemerédi sum-product problems
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 201
EP  - 205
VL  - 336
IS  - 3
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/S1631-073X(03)00018-9/
DO  - 10.1016/S1631-073X(03)00018-9
LA  - en
ID  - CRMATH_2003__336_3_201_0
ER  - 
%0 Journal Article
%A Chang, Mei-Chu
%T New results on the Erdös–Szemerédi sum-product problems
%J Comptes Rendus. Mathématique
%D 2003
%P 201-205
%V 336
%N 3
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/S1631-073X(03)00018-9/
%R 10.1016/S1631-073X(03)00018-9
%G en
%F CRMATH_2003__336_3_201_0
Chang, Mei-Chu. New results on the Erdös–Szemerédi sum-product problems. Comptes Rendus. Mathématique, Tome 336 (2003) no. 3, pp. 201-205. doi : 10.1016/S1631-073X(03)00018-9. http://archive.numdam.org/articles/10.1016/S1631-073X(03)00018-9/

[1] Borevich, L.I.; Shafarevich, I.R. Number Theory, Academic Press, 1966

[2] Chang, M. A polynomial bound in Freiman's theorem, Duke Math. J., Volume 113 (2002) no. 3, pp. 399-419

[3] M. Chang, Erdös–Szemerédi problem on sum set and product set, Ann. of Math., submitted

[4] M. Chang, Factorization in generalized arithmetic progressions and applications to the Erdös–Szemerédi sum-product problems, Preprint, 2002

[5] Elekes, G. On the number of sums and products, Acta Arith., Volume 81 (1997) no. 4, pp. 365-367

[6] G. Elekes, M. Nathanson, I. Ruzsa, Convexity and sumsets, J. Number Theory, to appear

[7] G. Elekes, J. Ruzsa, Few sums, many products, Preprint

[8] P. Erdös, E. Szemerédi, On sums and products of integers, in: P. Erdös, L. Alpàr, G. Haláz (Eds.), Stud. Pure Math., pp. 215–218

[9] Laczkovich, I. Ruzsa, Preprint

[10] Nathanson, M. Additive Number Theory, Springer, 1996

[11] Rudin, W. Trigonometric series with gaps, J. Math. Mech., Volume 9 (1960), pp. 203-227

[12] Szemerédi, E.; Trotter, W. Extremal problems in discrete geometry, Combinatorics, Volume 3 (1983) no. 3–4, pp. 387-392

Cité par Sources :