Harmonic Analysis/Mathematical Analysis
On the Lévy–Raikov–Marcinkiewicz theorem
[Sur le théorème de Lévy–Raikov–Marcinkiewicz]
Comptes Rendus. Mathématique, Tome 336 (2003) no. 3, pp. 237-240.

Soit une mesure de Borel μ, finie et non-négative. Le théorème classique de Lévy–Raikov–Marcinkiewicz affirme que la transformée de Fourier μ ^ de μ a une continuation analytique dans la bande {t:0<t<R} si elle a une continuation analytique dans quelque demi-voisinage complexe de l'origine contenant un intervalle (0,iR). Nous prolongeons ce résultat à des classes générales de mesures et de distributions en supposant la non-négativité sur un rayon et une croissance tempérée sur toute la ligne.

Let μ be a finite nonnegative Borel measure. The classical Lévy–Raikov–Marcinkiewicz theorem states that if its Fourier transform μ ^ can be analytically continued to some complex half-neighborhood of the origin containing an interval (0,iR) then μ ^ admits analytic continuation into the strip {t:0<t<R}. We extend this result to general classes of measures and distributions, assuming non-negativity only on some ray and allowing temperate growth on the whole line.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00035-9
Ostrovskii, Iossif 1, 2 ; Ulanovskii, Alexander 3

1 Department of Mathematics, Bilkent University, 06533 Bilkent, Ankara, Turkey
2 Verkin Institute for Low Temperature Physics and Engineering, 61103 Kharkov, Ukraine
3 Stavanger University College, PO Box 2557, Ullandhaug, 4091 Stavanger, Norway
@article{CRMATH_2003__336_3_237_0,
     author = {Ostrovskii, Iossif and Ulanovskii, Alexander},
     title = {On the {L\'evy{\textendash}Raikov{\textendash}Marcinkiewicz} theorem},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {237--240},
     publisher = {Elsevier},
     volume = {336},
     number = {3},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00035-9},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/S1631-073X(03)00035-9/}
}
TY  - JOUR
AU  - Ostrovskii, Iossif
AU  - Ulanovskii, Alexander
TI  - On the Lévy–Raikov–Marcinkiewicz theorem
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 237
EP  - 240
VL  - 336
IS  - 3
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/S1631-073X(03)00035-9/
DO  - 10.1016/S1631-073X(03)00035-9
LA  - en
ID  - CRMATH_2003__336_3_237_0
ER  - 
%0 Journal Article
%A Ostrovskii, Iossif
%A Ulanovskii, Alexander
%T On the Lévy–Raikov–Marcinkiewicz theorem
%J Comptes Rendus. Mathématique
%D 2003
%P 237-240
%V 336
%N 3
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/S1631-073X(03)00035-9/
%R 10.1016/S1631-073X(03)00035-9
%G en
%F CRMATH_2003__336_3_237_0
Ostrovskii, Iossif; Ulanovskii, Alexander. On the Lévy–Raikov–Marcinkiewicz theorem. Comptes Rendus. Mathématique, Tome 336 (2003) no. 3, pp. 237-240. doi : 10.1016/S1631-073X(03)00035-9. http://archive.numdam.org/articles/10.1016/S1631-073X(03)00035-9/

[1] Hörmander, L. The Analysis of Linear Partial Differential Operators, I, Springer-Verlag, Berlin, 1983

[2] Linnik, Ju.V.; Ostrovskii, I.V. Decomposition of Random Variables and Vectors, American Mathematical Society, Providence, RI, 1977

[3] Ostrovskii, I.V.; Ulanovskii, A. On sign changes of distributions having spectral gap at the origin, C. R. Acad. Sci. Paris, Sér. I, Volume 336 (2003) (to be published)

Cité par Sources :