Deux fonctions univalentes sont équivalentes, f∼g, si elles ont même dérivée Schwarzienne. La relation d'équivalence ∼ étant définie à une transformation homographique près, on obtient un isomorphisme entre la variété
Two univalent functions are equivalent, f∼g, if they have the same Schwarzian derivative. The equivalence relation ∼ being defined up to an homographic transformation, it gives an isomorphism between the manifold
Accepté le :
Publié le :
@article{CRMATH_2003__336_5_429_0, author = {Airault, Helene and Bogachev, Vladimir}, title = {Realization of {Virasoro} unitarizing measures on the set of {Jordan} curves}, journal = {Comptes Rendus. Math\'ematique}, pages = {429--434}, publisher = {Elsevier}, volume = {336}, number = {5}, year = {2003}, doi = {10.1016/S1631-073X(03)00085-2}, language = {en}, url = {https://www.numdam.org/articles/10.1016/S1631-073X(03)00085-2/} }
TY - JOUR AU - Airault, Helene AU - Bogachev, Vladimir TI - Realization of Virasoro unitarizing measures on the set of Jordan curves JO - Comptes Rendus. Mathématique PY - 2003 SP - 429 EP - 434 VL - 336 IS - 5 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/S1631-073X(03)00085-2/ DO - 10.1016/S1631-073X(03)00085-2 LA - en ID - CRMATH_2003__336_5_429_0 ER -
%0 Journal Article %A Airault, Helene %A Bogachev, Vladimir %T Realization of Virasoro unitarizing measures on the set of Jordan curves %J Comptes Rendus. Mathématique %D 2003 %P 429-434 %V 336 %N 5 %I Elsevier %U https://www.numdam.org/articles/10.1016/S1631-073X(03)00085-2/ %R 10.1016/S1631-073X(03)00085-2 %G en %F CRMATH_2003__336_5_429_0
Airault, Helene; Bogachev, Vladimir. Realization of Virasoro unitarizing measures on the set of Jordan curves. Comptes Rendus. Mathématique, Tome 336 (2003) no. 5, pp. 429-434. doi : 10.1016/S1631-073X(03)00085-2. https://www.numdam.org/articles/10.1016/S1631-073X(03)00085-2/
[1] Mesure unitarisante; algèbre de Heisenberg, algèbre de Virasoro, C. R. Acad. Sci. Paris, Ser. I, Volume 334 (2002), pp. 787-792
[2] Unitarizing probability measures for representations of Virasoro algebra, J. Math. Pures Appl., Volume 80 (2001) no. 6, pp. 627-667
[3] Support of Virasoro unitarizing measures, C. R. Acad. Sci. Paris, Ser. I, Volume 335 (2002), pp. 621-626
[4] An algebra of differential operators and generating functions on the set of univalent functions, Bull. Sci. Math. (2002)
[5] Cours à l'Université de Pise. Differentiable measures and the Malliavin calculus (Mai 1995), Scuola Normale Superiore, Pisa, J. Math. Sci., Volume 87 (1997) no. 4, pp. 3577-3731
[6] Geometric approach to discrete series of unireps for Virasoro, J. Math. Pures Appl., Volume 77 (1998), pp. 735-746
[7] Univalent Functions and Teichmüller Spaces, Graduate Texts in Math., 109, Springer-Verlag, 1987
[8] Holomorphic extensions of representations of the group of diffeomorphisms of the circle, Math. USSR-Sb., Volume 67 (1990) no. 1, pp. 75-96
Cité par Sources :