Topology/Analytic Geometry
Two-dimensional iterated torus knots and quasi-ordinary surface singularities
[Nœuds toriques itérés bidimensionnels et singularités quasi-ordinaires des surfaces]
Comptes Rendus. Mathématique, Tome 336 (2003) no. 8, pp. 651-656.

Nous définissons une notion de nœud torique itéré bidimensionnel, à savoir des plongements particuliers d'un 2-tore dans le produit cartésien d'un 2-tore et d'un 2-disque. Nous appliquons cette définition à la description de la topologie plongée du bord d'un germe quasi-ordinaire irréductible d'hypersurface de dimension 2, en fonction des exposants caractéristiques d'une projection quasi-ordinaire arbitraire. Accessoirement, nous donnons un algorithme de calcul du type de Jung–Hirzebruch de sa normalisation.

We define a notion of 2-dimensional iterated torus knot, namely special embeddings of a 2-torus in the Cartesian product of a 2-torus and a 2-disc. We apply this definition to give a description of the embedded topology of the boundary of an irreducible quasi-ordinary hypersurface germ of dimension 2, in terms of the characteristic exponents of an arbitrary quasi-ordinary projection. Incidentally, we give an algorithm for computing the Jung–Hirzebruch type of its normalization.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00099-2
Popescu-Pampu, Patrick 1

1 Univ. Paris 7 Denis Diderot, Inst. de Maths.–UMR CNRS 7586, équipe « géométrie et dynamique », case 7012, 2, place Jussieu, 75251 Paris cedex 05, France
@article{CRMATH_2003__336_8_651_0,
     author = {Popescu-Pampu, Patrick},
     title = {Two-dimensional iterated torus knots and quasi-ordinary surface singularities},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {651--656},
     publisher = {Elsevier},
     volume = {336},
     number = {8},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00099-2},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/S1631-073X(03)00099-2/}
}
TY  - JOUR
AU  - Popescu-Pampu, Patrick
TI  - Two-dimensional iterated torus knots and quasi-ordinary surface singularities
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 651
EP  - 656
VL  - 336
IS  - 8
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/S1631-073X(03)00099-2/
DO  - 10.1016/S1631-073X(03)00099-2
LA  - en
ID  - CRMATH_2003__336_8_651_0
ER  - 
%0 Journal Article
%A Popescu-Pampu, Patrick
%T Two-dimensional iterated torus knots and quasi-ordinary surface singularities
%J Comptes Rendus. Mathématique
%D 2003
%P 651-656
%V 336
%N 8
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/S1631-073X(03)00099-2/
%R 10.1016/S1631-073X(03)00099-2
%G en
%F CRMATH_2003__336_8_651_0
Popescu-Pampu, Patrick. Two-dimensional iterated torus knots and quasi-ordinary surface singularities. Comptes Rendus. Mathématique, Tome 336 (2003) no. 8, pp. 651-656. doi : 10.1016/S1631-073X(03)00099-2. http://archive.numdam.org/articles/10.1016/S1631-073X(03)00099-2/

[1] Ban, C. A Whitney stratification and equisingular family of quasi-ordinary singularities, Proc. Amer. Math. Soc., Volume 117 (1993) no. 2, pp. 305-311

[2] Costa, A.F. On the link of quasi-ordinary singularities (Aroca, J.M.; Sanchez Giralda, T.; Vicente, J.-L., eds.), Géométrie algébrique et applications II. Singularités et géométrie complexe, Travaux en cours, Vol. 23, Hermann, 1987

[3] Durfee, A.H. Neighborhoods of algebraic sets, Trans. Amer. Math. Soc., Volume 276 (1983) no. 2, pp. 517-530

[4] Fulton, W. Introduction to Toric Varieties, Princeton University Press, 1993

[5] Gau, Y.-N. Embedded topological classification of quasi-ordinary singularities, Mem. Amer. Math. Soc., Volume 388 (1988)

[6] P. González Pérez, Quasi-ordinary singularities via toric geometry, Thesis, Univ. of La Laguna, Tenerife, Spain, September 2000

[7] Lê, D.T. Topology of complex singularities (Lê, D.T.; Saito, K.; Teissier, B., eds.), Singularity Theory, World Scientific, 1995

[8] Lipman, J. Quasi-ordinary singularities of surfaces in C 3 , Part 2, Proc. Sympos. Pure Math., 40, 1983, pp. 161-172

[9] Lipman, J. Topological invariants of quasi-ordinary singularities, Mem. Amer. Math. Soc., Volume 388 (1988)

[10] Oda, T. Convex Bodies and Algebraic Geometry: An Introduction to Toric Varieties, Springer-Verlag, 1988

[11] Oh, K. Topological types of quasi-ordinary singularities, Proc. Amer. Math. Soc., Volume 117 (1993) no. 1, pp. 53-59

[12] P. Popescu-Pampu, Arbres de contact des singularités quasi-ordinaires et graphes d'adjacence pour les 3-variétés réelles, Thèse, Univ. Paris 7, novembre 2001

Cité par Sources :