Mathematical Physics/Partial Differential Equations
Geodesics and the Einstein-nonlinear wave system
[Courbes géodesiques et l'équation d'Einstein]
Comptes Rendus. Mathématique, Tome 336 (2003) no. 7, pp. 615-618.

On étude le problème du mouvement des ondes solitaires dans le système qui comprend l'équation d'Einstein et l'équation des ondes non linéaires.

Results concerning the problem of motion of test particles in the context of solitary wave solutions of the Einstein-nonlinear wave system are announced.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00126-2
Stuart, David M.A. 1

1 CMS, University of Cambridge, Cambridge, CB3 OWA, UK
@article{CRMATH_2003__336_7_615_0,
     author = {Stuart, David M.A.},
     title = {Geodesics and the {Einstein-nonlinear} wave system},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {615--618},
     publisher = {Elsevier},
     volume = {336},
     number = {7},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00126-2},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/S1631-073X(03)00126-2/}
}
TY  - JOUR
AU  - Stuart, David M.A.
TI  - Geodesics and the Einstein-nonlinear wave system
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 615
EP  - 618
VL  - 336
IS  - 7
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/S1631-073X(03)00126-2/
DO  - 10.1016/S1631-073X(03)00126-2
LA  - en
ID  - CRMATH_2003__336_7_615_0
ER  - 
%0 Journal Article
%A Stuart, David M.A.
%T Geodesics and the Einstein-nonlinear wave system
%J Comptes Rendus. Mathématique
%D 2003
%P 615-618
%V 336
%N 7
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/S1631-073X(03)00126-2/
%R 10.1016/S1631-073X(03)00126-2
%G en
%F CRMATH_2003__336_7_615_0
Stuart, David M.A. Geodesics and the Einstein-nonlinear wave system. Comptes Rendus. Mathématique, Tome 336 (2003) no. 7, pp. 615-618. doi : 10.1016/S1631-073X(03)00126-2. http://archive.numdam.org/articles/10.1016/S1631-073X(03)00126-2/

[1] Berestycki, H.; Lions, P.L. Nonlinear scalar field equations, I, Arch. Rational. Mech. Anal., Volume 82 (1983), pp. 313-345

[2] Choquet-Bruhat, Y.; Fisher, A.; Marsden, J. Équations des contraintes sur une variété non compacte, C. R. Acad. Sci. Paris, Sér. A–B, Volume 284 (1977) no. 16, p. A975-A978

[3] Grillakis, M.; Strauss, W.; Shatah, J. Stablility theory of solitary waves in the presence of symmetry, I, J. Funct. Anal., Volume 74 (1987), pp. 160-197

[4] Hughes, T.; Marsden, J.; Kato, T. Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity, Arch. Rational Mech. Anal., Volume 63 (1977) no. 3, pp. 273-294

[5] Mcleod, K. Uniqueness of positive radial solutions of Δu+f(u)=0 in n , Trans. Amer. Math. Soc., Volume 339 (1993), pp. 495-505

[6] Stuart, D. Modulational approach to stability of non-topological solitons in semilinear wave equations, J. Math. Pures Appl., Volume 80 (2001) no. 1, pp. 51-83

[7] D. Stuart, Geodesics and the Einstein nonlinear wave system, in preparation

[8] D. Stuart, The geodesic hypothesis and non-topological solitons on pseudo-Riemannian manifolds, Preprint

[9] Stuart, D. Solitons on pseudo-Riemannian manifolds: stability and motion, Electron. Res. Announc. Amer. Math. Soc., Volume 6 (2000), pp. 75-89 (electronic)

[10] Weinberg, S. Gravitation and Cosmology, Wiley, New York, 1972

Cité par Sources :