Soit M une 3-variété close orientable et désignons par Vol(M) le volume simplicial de Gromov de M. Cette Note est consacrée à l'étude des applications de degré non-nul où chaque Ni est une variété Haken. Le résultat principal affirme que toute suite (Ni,fi) de variétés Haken satisfaisant limi→∞deg(fi)×Vol(Ni)=Vol(M) est finie, à homéomorphisme près. Ce résultat implique en particulier que toute 3-variété close orientable dont le volume simplicial de Gromov est nul (en particulier toute variété graphée) domine au plus un nombre fini de variétés Haken.
Let M be a closed orientable 3-manifold and let Vol(M) denote its Gromov simplicial volume. This paper is devoted to the study of sequences of non-zero degree maps to Haken manifolds. We prove that any sequence of Haken manifolds (Ni,fi), satisfying limi→∞deg(fi)×Vol(Ni)=Vol(M) is finite up to homeomorphism. As an application, we deduce from this fact that any closed orientable 3-manifold with zero Gromov simplicial volume and in particular any graph manifold dominates at most finitely many Haken 3-manifolds.
Accepté le :
Publié le :
@article{CRMATH_2003__336_10_833_0, author = {Derbez, P.}, title = {Volume-convergent sequences of {Haken} 3-manifolds}, journal = {Comptes Rendus. Math\'ematique}, pages = {833--838}, publisher = {Elsevier}, volume = {336}, number = {10}, year = {2003}, doi = {10.1016/S1631-073X(03)00187-0}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/S1631-073X(03)00187-0/} }
TY - JOUR AU - Derbez, P. TI - Volume-convergent sequences of Haken 3-manifolds JO - Comptes Rendus. Mathématique PY - 2003 SP - 833 EP - 838 VL - 336 IS - 10 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/S1631-073X(03)00187-0/ DO - 10.1016/S1631-073X(03)00187-0 LA - en ID - CRMATH_2003__336_10_833_0 ER -
Derbez, P. Volume-convergent sequences of Haken 3-manifolds. Comptes Rendus. Mathématique, Tome 336 (2003) no. 10, pp. 833-838. doi : 10.1016/S1631-073X(03)00187-0. http://archive.numdam.org/articles/10.1016/S1631-073X(03)00187-0/
[1] Non-zero degree maps and surface bundles over , J. Differential Geom., Volume 43 (1996), pp. 789-806
[2] Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math., Volume 56 (1983), pp. 213-307
[3] Any 3-manifold 1-dominates at most finitely many 3-manifolds of S3-geometry, Proc. Amer. Math. Soc., Volume 130 (2002) no. 10, pp. 3117-3123
[4] Seifert fibered space in 3-manifolds, Mem. Amer. Math. Soc., Volume 21 (1979) no. 220
[5] Homotopy Equivalences of 3-Manifolds with Boundaries, Lecture Notes in Math., 761, Springer-Verlag, 1979
[6] Problems in low dimensional topology (Kazez, W.H., ed.), Geometric Topology, Part 2, AMS/IP Studies in Adv. Math., 2, American Mathematical Society and International Press, 1997, pp. 35-473
[7] Unique decomposition theorem for 3-manifolds, Amer. J. Math., Volume 84 (1962), pp. 1-7
[8] Degree one maps between geometric 3-manifolds, Trans. Amer. Math. Soc., Volume 332 (1992) no. 1
[9] Non-zero degree maps to hyperbolic 3-manifolds, J. Differential Geom., Volume 43 (1998), pp. 517-546
[10] Sequences of degree-one maps between geometric 3-manifolds, Math. Ann., Volume 316 (2000), pp. 733-742
[11] Three dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc., Volume 6 (1982), pp. 357-381
[12] Any 3-manifold 1-dominates at most finitely many geometric 3-manifolds, Math. Ann., Volume 322 (2002) no. 3, pp. 525-535
Cité par Sources :