Topology
Volume-convergent sequences of Haken 3-manifolds
[Suites de variétés Haken dont les volumes convergent]
Comptes Rendus. Mathématique, Tome 336 (2003) no. 10, pp. 833-838.

Soit M une 3-variété close orientable et désignons par Vol(M) le volume simplicial de Gromov de M. Cette Note est consacrée à l'étude des applications de degré non-nul f i :MN i où chaque Ni est une variété Haken. Le résultat principal affirme que toute suite (Ni,fi) de variétés Haken satisfaisant limi→∞deg(fi)×Vol(Ni)=Vol(M) est finie, à homéomorphisme près. Ce résultat implique en particulier que toute 3-variété close orientable dont le volume simplicial de Gromov est nul (en particulier toute variété graphée) domine au plus un nombre fini de variétés Haken.

Let M be a closed orientable 3-manifold and let Vol(M) denote its Gromov simplicial volume. This paper is devoted to the study of sequences of non-zero degree maps f i :MN i to Haken manifolds. We prove that any sequence of Haken manifolds (Ni,fi), satisfying limi→∞deg(fi)×Vol(Ni)=Vol(M) is finite up to homeomorphism. As an application, we deduce from this fact that any closed orientable 3-manifold with zero Gromov simplicial volume and in particular any graph manifold dominates at most finitely many Haken 3-manifolds.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00187-0
Derbez, P. 1

1 Université de Bourgogne, U.F.R. sciences et techniques, 9, avenue Alain Savary, BP 47870, 21078 Dijon cedex, France
@article{CRMATH_2003__336_10_833_0,
     author = {Derbez, P.},
     title = {Volume-convergent sequences of {Haken} 3-manifolds},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {833--838},
     publisher = {Elsevier},
     volume = {336},
     number = {10},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00187-0},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/S1631-073X(03)00187-0/}
}
TY  - JOUR
AU  - Derbez, P.
TI  - Volume-convergent sequences of Haken 3-manifolds
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 833
EP  - 838
VL  - 336
IS  - 10
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/S1631-073X(03)00187-0/
DO  - 10.1016/S1631-073X(03)00187-0
LA  - en
ID  - CRMATH_2003__336_10_833_0
ER  - 
%0 Journal Article
%A Derbez, P.
%T Volume-convergent sequences of Haken 3-manifolds
%J Comptes Rendus. Mathématique
%D 2003
%P 833-838
%V 336
%N 10
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/S1631-073X(03)00187-0/
%R 10.1016/S1631-073X(03)00187-0
%G en
%F CRMATH_2003__336_10_833_0
Derbez, P. Volume-convergent sequences of Haken 3-manifolds. Comptes Rendus. Mathématique, Tome 336 (2003) no. 10, pp. 833-838. doi : 10.1016/S1631-073X(03)00187-0. http://archive.numdam.org/articles/10.1016/S1631-073X(03)00187-0/

[1] Boileau, M.; Wang, S. Non-zero degree maps and surface bundles over S 1 , J. Differential Geom., Volume 43 (1996), pp. 789-806

[2] Gromov, M. Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math., Volume 56 (1983), pp. 213-307

[3] Hayat-Legrand, C.; Wang, S.C.; Zieschang, H. Any 3-manifold 1-dominates at most finitely many 3-manifolds of S3-geometry, Proc. Amer. Math. Soc., Volume 130 (2002) no. 10, pp. 3117-3123

[4] Jaco, W.; Shalen, P.B. Seifert fibered space in 3-manifolds, Mem. Amer. Math. Soc., Volume 21 (1979) no. 220

[5] Johannson, K. Homotopy Equivalences of 3-Manifolds with Boundaries, Lecture Notes in Math., 761, Springer-Verlag, 1979

[6] Kirby, R. Problems in low dimensional topology (Kazez, W.H., ed.), Geometric Topology, Part 2, AMS/IP Studies in Adv. Math., 2, American Mathematical Society and International Press, 1997, pp. 35-473

[7] Milnor, J. Unique decomposition theorem for 3-manifolds, Amer. J. Math., Volume 84 (1962), pp. 1-7

[8] Rong, Y. Degree one maps between geometric 3-manifolds, Trans. Amer. Math. Soc., Volume 332 (1992) no. 1

[9] Soma, T. Non-zero degree maps to hyperbolic 3-manifolds, J. Differential Geom., Volume 43 (1998), pp. 517-546

[10] Soma, T. Sequences of degree-one maps between geometric 3-manifolds, Math. Ann., Volume 316 (2000), pp. 733-742

[11] Thurston, W.P. Three dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc., Volume 6 (1982), pp. 357-381

[12] Wang, S.; Zhou, Q. Any 3-manifold 1-dominates at most finitely many geometric 3-manifolds, Math. Ann., Volume 322 (2002) no. 3, pp. 525-535

Cité par Sources :