La partie principale de l'erreur dans l'intégration par le schéma d'Euler d'une EDS avec des coefficients réguliers est une distribution de Watanabe généralisée.
The principal part of the error in the Euler scheme for an SDE with smooth coefficients can be expressed as a generalized Watanabe distribution on Wiener space.
Accepté le :
Publié le :
@article{CRMATH_2003__336_10_851_0, author = {Malliavin, Paul and Thalmaier, Anton}, title = {Numerical error for {SDE:} {Asymptotic} expansion and hyperdistributions}, journal = {Comptes Rendus. Math\'ematique}, pages = {851--856}, publisher = {Elsevier}, volume = {336}, number = {10}, year = {2003}, doi = {10.1016/S1631-073X(03)00189-4}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/S1631-073X(03)00189-4/} }
TY - JOUR AU - Malliavin, Paul AU - Thalmaier, Anton TI - Numerical error for SDE: Asymptotic expansion and hyperdistributions JO - Comptes Rendus. Mathématique PY - 2003 SP - 851 EP - 856 VL - 336 IS - 10 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/S1631-073X(03)00189-4/ DO - 10.1016/S1631-073X(03)00189-4 LA - en ID - CRMATH_2003__336_10_851_0 ER -
%0 Journal Article %A Malliavin, Paul %A Thalmaier, Anton %T Numerical error for SDE: Asymptotic expansion and hyperdistributions %J Comptes Rendus. Mathématique %D 2003 %P 851-856 %V 336 %N 10 %I Elsevier %U http://archive.numdam.org/articles/10.1016/S1631-073X(03)00189-4/ %R 10.1016/S1631-073X(03)00189-4 %G en %F CRMATH_2003__336_10_851_0
Malliavin, Paul; Thalmaier, Anton. Numerical error for SDE: Asymptotic expansion and hyperdistributions. Comptes Rendus. Mathématique, Tome 336 (2003) no. 10, pp. 851-856. doi : 10.1016/S1631-073X(03)00189-4. http://archive.numdam.org/articles/10.1016/S1631-073X(03)00189-4/
[1] The law of the Euler scheme for stochastic differential equations. I. Convergence rate of the distribution function, Probab. Theory Related Fields, Volume 104 (1996), pp. 43-60
[2] Weak approximation of killed diffusion using Euler schemes, Stochastic Process. Appl., Volume 87 (2000), pp. 167-197
[3] Weak rate of convergence for an Euler scheme of nonlinear SDE's, Monte Carlo Methods Appl., Volume 3 (1997), pp. 327-345
[4] Analyse quasi-sure du schéma d'Euler, C. R. Acad. Sci. Paris, Volume 315 (1992), pp. 599-602
[5] Expansion of the global error for numerical schemes solving stochastic differential equations, Stochastic Anal. Appl., Volume 8 (1990), pp. 483-509
[6] Quantiles of the Euler scheme for diffusion processes and financial applications, Math. Finance, Volume 13 (2003), pp. 187-199
[7] Analysis of error with Malliavin calculus: application to hedging, Math. Finance, Volume 13 (2003), pp. 201-214
[8] Analysis of Wiener functionals (Malliavin calculus) and its applications to heat kernels, Ann. Probab., Volume 15 (1987), pp. 1-39
Cité par Sources :