Mathematical Problems in Mechanics
On rigid displacements and their relation to the infinitesimal rigid displacement lemma in shell theory
[Déplacements rigides et leur relation au lemme du mouvement rigide infinitésimal en théorie des coques]
Comptes Rendus. Mathématique, Tome 336 (2003) no. 11, pp. 959-966.

Soit ω un ouvert connexe de 2 et θ une immersion de ω dans 3 . On établit que l'ensemble formé par les déplacements rigides de la surface θ(ω) est une sous-variété de dimension 6 et de classe 𝒞 de l'espace 𝐇 1 (ω). On montre aussi que les déplacements rigides infinitésimaux de la même surface θ(ω) engendrent le plan tangent à l'origine à cette sous-variété.

Let ω be an open connected subset of 2 and let θ be an immersion from ω into 3 . It is established that the set formed by all rigid displacements of the surface θ(ω) is a submanifold of dimension 6 and of class 𝒞 of the space 𝐇 1 (ω). It is shown that the infinitesimal rigid displacements of the same surface θ(ω) span the tangent space at the origin to this submanifold.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00205-X
Ciarlet, Philippe G. 1 ; Mardare, Cristinel 2

1 Department of Mathematics, City University of Hong Kong, 83, Tat Chee Avenue, Kowloon, Hong Kong
2 Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, 4, place Jussieu, 75005 Paris, France
@article{CRMATH_2003__336_11_959_0,
     author = {Ciarlet, Philippe G. and Mardare, Cristinel},
     title = {On rigid displacements and their relation to the infinitesimal rigid displacement lemma in shell theory},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {959--966},
     publisher = {Elsevier},
     volume = {336},
     number = {11},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00205-X},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/S1631-073X(03)00205-X/}
}
TY  - JOUR
AU  - Ciarlet, Philippe G.
AU  - Mardare, Cristinel
TI  - On rigid displacements and their relation to the infinitesimal rigid displacement lemma in shell theory
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 959
EP  - 966
VL  - 336
IS  - 11
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/S1631-073X(03)00205-X/
DO  - 10.1016/S1631-073X(03)00205-X
LA  - en
ID  - CRMATH_2003__336_11_959_0
ER  - 
%0 Journal Article
%A Ciarlet, Philippe G.
%A Mardare, Cristinel
%T On rigid displacements and their relation to the infinitesimal rigid displacement lemma in shell theory
%J Comptes Rendus. Mathématique
%D 2003
%P 959-966
%V 336
%N 11
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/S1631-073X(03)00205-X/
%R 10.1016/S1631-073X(03)00205-X
%G en
%F CRMATH_2003__336_11_959_0
Ciarlet, Philippe G.; Mardare, Cristinel. On rigid displacements and their relation to the infinitesimal rigid displacement lemma in shell theory. Comptes Rendus. Mathématique, Tome 336 (2003) no. 11, pp. 959-966. doi : 10.1016/S1631-073X(03)00205-X. http://archive.numdam.org/articles/10.1016/S1631-073X(03)00205-X/

[1] Abraham, R.; Marsden, J.E.; Ratiu, T. Manifolds, Tensor Analysis, and Applications, Springer-Verlag, New York, 1988

[2] Akian, J.L. A simple proof of the ellipticity of Koiter's model, Anal. Appl., Volume 1 (2003), pp. 1-16

[3] Anicic, S.; Le Dret, H.; Raoult, A. Lemme du mouvement rigide infinitésimal en coordonnées lipschitziennes et application aux coques de régularité minimale, C. R. Acad. Sci. Paris, Ser. I, Volume 336 (2003), pp. 365-370

[4] Bernadou, M.; Ciarlet, P.G. Sur l'ellipticité du modèle linéaire de coques de W.T. Koiter (Glowinski, R.; Lions, J.-L., eds.), Computing Methods in Applied Sciences and Engineering, Lecture Notes in Econom. Math. Systems, 134, Springer-Verlag, Heidelberg, 1976, pp. 89-136

[5] Blouza, A.; Le Dret, H. Existence and uniqueness for the linear Koiter model for shells with little regularity, Quart. Appl. Math., Volume 57 (1999), pp. 317-337

[6] Ciarlet, P.G. Mathematical Elasticity, Vol. III: Theory of Shells, North-Holland, Amsterdam, 2000

[7] Ciarlet, P.G.; Larsonneur, F. On the recovery of a surface with prescribed first and second fundamental forms, J. Math. Pures Appl., Volume 81 (2002), pp. 167-185

[8] Ciarlet, P.G.; Mardare, C. On rigid displacements and their relation to the infinitesimal rigid displacement lemma in three-dimensional elasticity, C. R. Acad. Sci. Paris, Ser. I, Volume 336 (2003), pp. 873-878

[9] P.G. Ciarlet, C. Mardare, On rigid and infinitesimal rigid displacements in shell theory, to appear

[10] Ciarlet, P.G.; Mardare, S. On Korn's inequalities in curvilinear coordinates, Math. Models Methods Appl. Sci., Volume 11 (2001), pp. 1379-1391

[11] Friesecke, G.; James, R.D.; Müller, S. A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity, Comm. Pure Appl. Math., Volume 55 (2002), pp. 1461-1506

[12] Koiter, W.T. On the foundations of the linear theory of thin elastic shells, Proc. Kon. Ned. Akad. Wetensch. Ser. B, Volume 73 (1970), pp. 169-195

[13] Reshetnyak, Y.G. Liouville's theory on conformal mappings under minimal regularity assumptions, Siberian Math. J., Volume 8 (1967), pp. 69-85

Cité par Sources :