Topology
Thin presentation of knots in lens spaces and P 3 -conjecture
[Présentation mince des nœuds dans les espaces lenticulaires]
Comptes Rendus. Mathématique, Tome 336 (2003) no. 11, pp. 937-940.

Cette Note concerne les nœuds d'un espace lenticulaire L qui produisent S3 par chirurgies de Dehn. Nous introduisons ici une présentation mince des nœuds de L, par rapport à une épine standard. Nous prouvons alors que parmi ces nœuds, ceux qui possèdent une présentation mince n'ayant que des maxima sont des 0 ou 1-tresses. Dans le cas où L=P 3 , nous déduisons que les nœuds minimalement tressés de P 3 ne peuvent produire S3 par chirurgie de Dehn.

This Note concerns knots in a lens space L that produce S3 by Dehn surgery. We introduce the thin presentation of knots in L, with respect to a standard spine. We prove that among such knots, those having a thin presentation with only maxima, are 0-bridge or 1-bridge braids in L. In the case L=P 3 , we deduce that minimally braided knots in P 3 cannot yield S3 by Dehn surgery.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00218-8
Deruelle, Arnaud 1

1 Université de Provence, CMI, 39, rue Joliot Curie, 13453 Marseille cedex 13, France
@article{CRMATH_2003__336_11_937_0,
     author = {Deruelle, Arnaud},
     title = {Thin presentation of knots in lens spaces and $ \mathbb{R}P^{3}$-conjecture},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {937--940},
     publisher = {Elsevier},
     volume = {336},
     number = {11},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00218-8},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/S1631-073X(03)00218-8/}
}
TY  - JOUR
AU  - Deruelle, Arnaud
TI  - Thin presentation of knots in lens spaces and $ \mathbb{R}P^{3}$-conjecture
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 937
EP  - 940
VL  - 336
IS  - 11
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/S1631-073X(03)00218-8/
DO  - 10.1016/S1631-073X(03)00218-8
LA  - en
ID  - CRMATH_2003__336_11_937_0
ER  - 
%0 Journal Article
%A Deruelle, Arnaud
%T Thin presentation of knots in lens spaces and $ \mathbb{R}P^{3}$-conjecture
%J Comptes Rendus. Mathématique
%D 2003
%P 937-940
%V 336
%N 11
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/S1631-073X(03)00218-8/
%R 10.1016/S1631-073X(03)00218-8
%G en
%F CRMATH_2003__336_11_937_0
Deruelle, Arnaud. Thin presentation of knots in lens spaces and $ \mathbb{R}P^{3}$-conjecture. Comptes Rendus. Mathématique, Tome 336 (2003) no. 11, pp. 937-940. doi : 10.1016/S1631-073X(03)00218-8. http://archive.numdam.org/articles/10.1016/S1631-073X(03)00218-8/

[1] J. Berge, Some knots with surgeries yielding lens spaces, Preprint

[2] Cerf, J. Sur les difféomorphismes de la sphère de dimension trois, Lecture Notes in Math., 53, Springer-Verlag, 1987

[3] A. Deruelle, Présentation mince des nœuds dans P 3 et application, Thèse, Univ. de Provence, LATP-URA 225, 2001

[4] A. Deruelle, Présentation mince des nœuds dans P 3 et conjecture de P 3 , Preprint, 2002

[5] A. Deruelle, D. Matignon, Thin presentation of knots and lens spaces, Preprint, 2002

[6] Gabai, D. Foliations and the topology of 3-manifolds III, J. Differential Geom., Volume 26 (1987), pp. 479-536

[7] Gabai, D. Surgery on knots in solid tori, Topology, Volume 28 (1989), pp. 1-6

[8] Gordon, C.McA. Dehn surgery and satellite knots, Trans. Amer. Math. Soc., Volume 275 (1983) no. 2, pp. 687-708

[9] Gordon, C.McA. Dehn surgery on knots, Proc. ICM Kyoto, 1990, pp. 631-642

[10] Gordon, C.McA. Combinatorial methods in Dehn surgery, Lectures at Knots '96, 1997, pp. 263-290

[11] Gordon, C.McA.; Luecke, J. Knots are determined by their complement, J. Amer. Math. Soc., Volume 2 (1989), pp. 371-415

[12] Matignon, D. Combinatorics and four bridged knots, J. Knot Theory and its Ram., Volume 10 (2001), pp. 493-527

[13] Parry, W. All types implies torsion, Proc. Amer. Math. Soc., Volume 110 (1990), pp. 871-875

[14] Rolfsen, D. Knots and Links, Math. Lecture Series, 7, 1976

[15] Scharlemann, M. Unknotting number-one knots are prime, Invent. Math., Volume 82 (1985), pp. 37-55

Cité par Sources :