Partial Differential Equations
A product estimate for Ginzburg–Landau and application to the gradient-flow
[Une estimée-produit pour Ginzburg–Landau, et application au flot-gradient]
Comptes Rendus. Mathématique, Tome 336 (2003) no. 12, pp. 997-1002.

Nous prouvons une nouvelle inégalite sur le jacobien (ou vorticité) associé à l'énergie de Ginzburg–Landau en dimension quelconque, et en donnons des corollaires statiques et dynamiques. Nous présentons ensuite une méthode pour prouver la convergence de flots-gradient associés à une famille d'énergies qui Gamma-convergent vers une énergie limite, que nous appliquons pour établir à l'aide de l'estimée dynamique précédemment obtenue, la loi limite de la dynamique d'un nombre fini de vortex pour le flot (de la chaleur) de Ginzburg–Landau en dimension 2 avec et sans champ magnétique.

We prove a new inequality for the Jacobian (or vorticity) associated to the Ginzburg–Landau energy in any dimension, and give static and dynamical corollaries. We then present a method to prove convergence of gradient-flows of families of energies which Gamma-converge to a limiting energy, which we apply to establish, thanks to the previous dynamical estimate, the limiting dynamical law of a finite number of vortices for the heat-flow of Ginzburg–Landau in dimension 2, with and without magnetic field.

Reçu le :
Publié le :
DOI : 10.1016/S1631-073X(03)00224-3
Sandier, Etienne 1 ; Serfaty, Sylvia 2

1 Mathématiques, Université Paris-12 Val-de-Marne, 61, ave du Général de Gaulle, 94010 Créteil cedex, France
2 Courant Institute of Mathematical Sciences, 251 Mercer st, New York, NY 10012, USA
@article{CRMATH_2003__336_12_997_0,
     author = {Sandier, Etienne and Serfaty, Sylvia},
     title = {A product estimate for {Ginzburg{\textendash}Landau} and application to the gradient-flow},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {997--1002},
     publisher = {Elsevier},
     volume = {336},
     number = {12},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00224-3},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/S1631-073X(03)00224-3/}
}
TY  - JOUR
AU  - Sandier, Etienne
AU  - Serfaty, Sylvia
TI  - A product estimate for Ginzburg–Landau and application to the gradient-flow
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 997
EP  - 1002
VL  - 336
IS  - 12
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/S1631-073X(03)00224-3/
DO  - 10.1016/S1631-073X(03)00224-3
LA  - en
ID  - CRMATH_2003__336_12_997_0
ER  - 
%0 Journal Article
%A Sandier, Etienne
%A Serfaty, Sylvia
%T A product estimate for Ginzburg–Landau and application to the gradient-flow
%J Comptes Rendus. Mathématique
%D 2003
%P 997-1002
%V 336
%N 12
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/S1631-073X(03)00224-3/
%R 10.1016/S1631-073X(03)00224-3
%G en
%F CRMATH_2003__336_12_997_0
Sandier, Etienne; Serfaty, Sylvia. A product estimate for Ginzburg–Landau and application to the gradient-flow. Comptes Rendus. Mathématique, Tome 336 (2003) no. 12, pp. 997-1002. doi : 10.1016/S1631-073X(03)00224-3. http://archive.numdam.org/articles/10.1016/S1631-073X(03)00224-3/

[1] G. Alberti, S. Baldo, G. Orlandi, Variational convergence for functionals of Ginzburg–Landau type, prépublication

[2] Bethuel, F.; Brezis, H.; Hélein, F. Ginzburg–Landau Vortices, Birkhäuser, 1994

[3] Jerrard, R. Lower bounds for generalized Ginzburg–Landau functionals, SIAM J. Math. Anal., Volume 30 (1999) no. 4, pp. 721-746

[4] Jerrard, R. Vortex dynamics for the Ginzburg–Landau wave equation, Calc. Var. Partial Differential Equations, Volume 9 (1999), pp. 1-30

[5] Jerrard, R.; Soner, M. Dynamics of Ginzburg–Landau vortices, Arch. Rational Mech. Anal., Volume 142 (1998) no. 2, pp. 99-125

[6] Jerrard, R.L.; Soner, H.M. The Jacobian and the Ginzburg–Landau functional, Calc. Var. Partial Differential Equations, Volume 14 (2002) no. 2, pp. 151-191

[7] Lin, F.H. Some dynamical properties of Ginzburg–Landau vortices, CPAM, Volume 49 (1996), pp. 323-359

[8] Sandier, E. Lower bounds for the energy of unit vector fields and applications, J. Functional Anal., Volume 152 (1998) no. 2, pp. 379-403

[9] E. Sandier, S. Serfaty, A product-estimate for Ginzburg–Landau and corollaries, prépublication

[10] E. Sandier, S. Serfaty, Gamma-convergence of gradient-flows and application to Ginzburg–Landau, à paraı̂tre

[11] Spirn, D. Vortex dynamics for the full time-dependent Ginzburg–Landau equations, CPAM, Volume 55 (2002) no. 5, pp. 537-581

Cité par Sources :