Nous définissons et étudions l'anneau des fonctions rationnelles dans le cadre hyper-analytique. Nous donnons un nombre de définitions équivalentes de la rationalité. La multiplication de Cauchy–Kovalevskaya joue un rôle important dans la théorie.
We define and study the ring of rational functions in the hyperholomorphic setting. We give a number of equivalent characterizations of rationality. The Cauchy–Kovalevskaya product plays an important role in the arguments.
Accepté le :
Publié le :
@article{CRMATH_2003__336_12_975_0, author = {Alpay, Daniel and Schneider, Baruch and Shapiro, Michael and Volok, Dan}, title = {Fonctions rationnelles et th\'eorie de la r\'ealisation: le cas hyper-analytique}, journal = {Comptes Rendus. Math\'ematique}, pages = {975--980}, publisher = {Elsevier}, volume = {336}, number = {12}, year = {2003}, doi = {10.1016/S1631-073X(03)00233-4}, language = {fr}, url = {http://archive.numdam.org/articles/10.1016/S1631-073X(03)00233-4/} }
TY - JOUR AU - Alpay, Daniel AU - Schneider, Baruch AU - Shapiro, Michael AU - Volok, Dan TI - Fonctions rationnelles et théorie de la réalisation: le cas hyper-analytique JO - Comptes Rendus. Mathématique PY - 2003 SP - 975 EP - 980 VL - 336 IS - 12 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/S1631-073X(03)00233-4/ DO - 10.1016/S1631-073X(03)00233-4 LA - fr ID - CRMATH_2003__336_12_975_0 ER -
%0 Journal Article %A Alpay, Daniel %A Schneider, Baruch %A Shapiro, Michael %A Volok, Dan %T Fonctions rationnelles et théorie de la réalisation: le cas hyper-analytique %J Comptes Rendus. Mathématique %D 2003 %P 975-980 %V 336 %N 12 %I Elsevier %U http://archive.numdam.org/articles/10.1016/S1631-073X(03)00233-4/ %R 10.1016/S1631-073X(03)00233-4 %G fr %F CRMATH_2003__336_12_975_0
Alpay, Daniel; Schneider, Baruch; Shapiro, Michael; Volok, Dan. Fonctions rationnelles et théorie de la réalisation: le cas hyper-analytique. Comptes Rendus. Mathématique, Tome 336 (2003) no. 12, pp. 975-980. doi : 10.1016/S1631-073X(03)00233-4. http://archive.numdam.org/articles/10.1016/S1631-073X(03)00233-4/
[1] Algorithme de Schur, Panoramas et Synthèses, 6, Société Mathématique de France, Paris, 1998
[2] A realization theorem for rational functions of several complex variables, System Control Lett., Volume 49 (2003) no. 3, pp. 225-229
[3] Some finite-dimensional backward shift-invariant subspaces in the ball and a related interpolation problem, Integral Equation Operator Theory, Volume 42 (2002), pp. 1-21
[4] Problème de Gleason et interpolation pour les fonctions hyper-analytiques, C. R. Acad. Sci. Paris, Ser. I, Volume 335 (2003)
[5] Subalgebras of -algebras. III. Multivariable operator theory, Acta Math., Volume 181 (1998), pp. 159-228
[6] Interpolation and commutant lifting for multipliers on reproducing kernel Hilbert spaces, Proceedings of Conference in Honor of the 60-th Birthday of M.A. Kaashoek, Oper. Theory Adv. Appl., 122, Birkhäuser, 2001, pp. 89-138
[7] Minimal Factorization of Matrix and Operator Functions, Oper. Theory Adv. Appl., 1, Birkhäuser, Basel, 1979
[8] Clifford Analysis, Pitman Res. Notes, 76, 1982
[9] H. Dym, J-contractive matrix functions, reproducing kernel Hilbert spaces and interpolation. Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1989
[10] Quaternionic and Clifford Calculus for Physicists and Engineers, Mathematical Methods in Practice, 1, Wiley, 1997
[11] Topics in Mathematical System Theory, McGraw-Hill, New York, 1969
[12] Hypercomplex differentiability its applications, Clifford Algebras and their Applications in Mathematical Physics, Deinze, 1993, Fund. Theories Phys., 55, Kluwer Academic, Dordrecht, 1993, pp. 141-150
Cité par Sources :